Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learning ELK Stack

You're reading from   Learning ELK Stack Build mesmerizing visualizations, analytics, and logs from your data using Elasticsearch, Logstash, and Kibana

Arrow left icon
Product type Paperback
Published in Nov 2015
Publisher
ISBN-13 9781785887154
Length 206 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Saurabh Chhajed Saurabh Chhajed
Author Profile Icon Saurabh Chhajed
Saurabh Chhajed
Arrow right icon
View More author details
Toc

The need for log analysis

Logs provide us with necessary information on how our system is behaving. However, the content and format of the logs varies among different services or say, among different components of the same system. For example, a scanner may log error messages related to communication with other devices; on the other hand, a web server logs information on all incoming requests, outgoing responses, time taken for a response, and so on. Similarly, application logs for an e-commerce website will log business-specific logs.

As the logs vary by their content, so will their uses. For example, the logs from a scanner may be used for troubleshooting or for a simple status check or reporting while the web server log is used to analyze traffic patterns across multiple products. Analysis of logs from an e-commerce site can help figure out whether packages from a specific location are returned repeatedly and the probable reasons for the same.

The following are some common use cases where log analysis is helpful:

  • Issue debugging
  • Performance analysis
  • Security analysis
  • Predictive analysis
  • Internet of things (IoT) and logging

Issue debugging

Debugging is one of the most common reasons to enable logging within your application. The simplest and most frequent use for a debug log is to grep for a specific error message or event occurrence. If a system administrator believes that a program crashed because of a network failure, then he or she will try to find a connection dropped message or a similar message in the server logs to analyze what caused the issue. Once the bug or the issue is identified, log analysis solutions help capture application information and snapshots of that particular time can be easily passed across development teams to analyze it further.

Performance analysis

Log analysis helps optimize or debug system performance and give essential inputs around bottlenecks in the system. Understanding a system's performance is often about understanding resource usage in the system. Logs can help analyze individual resource usage in the system, behavior of multiple threads in the application, potential deadlock conditions, and so on. Logs also carry with them timestamp information, which is essential to analyze how the system is behaving over time. For instance, a web server log can help know how individual services are performing based on response times, HTTP response codes, and so on.

Security analysis

Logs play a vital role in managing the application security for any organization. They are particularly helpful to detect security breaches, application misuse, malicious attacks, and so on. When users interact with the system, it generates log events, which can help track user behavior, identify suspicious activities, and raise alarms or security incidents for breaches.

The intrusion detection process involves session reconstruction from the logs itself. For example, ssh login events in the system can be used to identify any breaches on the machines.

Predictive analysis

Predictive analysis is one of the hot trends of recent times. Logs and events data can be used for very accurate predictive analysis. Predictive analysis models help in identifying potential customers, resource planning, inventory management and optimization, workload efficiency, and efficient resource scheduling. It also helps guide the marketing strategy, user-segment targeting, ad-placement strategy, and so on.

Internet of things and logging

When it comes to IoT devices (devices or machines that interact with each other without any human intervention), it is vital that the system is monitored and managed to keep downtime to a minimum and resolve any important bugs or issues swiftly. Since these devices should be able to work with little human intervention and may exist on a large geographical scale, log data is expected to play a crucial role in understanding system behavior and reducing downtime.

You have been reading a chapter from
Learning ELK Stack
Published in: Nov 2015
Publisher:
ISBN-13: 9781785887154
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image