Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
In-Memory Analytics with Apache Arrow

You're reading from   In-Memory Analytics with Apache Arrow Accelerate data analytics for efficient processing of flat and hierarchical data structures

Arrow left icon
Product type Paperback
Published in Sep 2024
Publisher Packt
ISBN-13 9781835461228
Length 406 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Matthew Topol Matthew Topol
Author Profile Icon Matthew Topol
Matthew Topol
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Part 1: Overview of What Arrow is, Its Capabilities, Benefits, and Goals
2. Chapter 1: Getting Started with Apache Arrow FREE CHAPTER 3. Chapter 2: Working with Key Arrow Specifications 4. Chapter 3: Format and Memory Handling 5. Part 2: Interoperability with Arrow: The Power of Open Standards
6. Chapter 4: Crossing the Language Barrier with the Arrow C Data API 7. Chapter 5: Acero: A Streaming Arrow Execution Engine 8. Chapter 6: Using the Arrow Datasets API 9. Chapter 7: Exploring Apache Arrow Flight RPC 10. Chapter 8: Understanding Arrow Database Connectivity (ADBC) 11. Chapter 9: Using Arrow with Machine Learning Workflows 12. Part 3: Real-World Examples, Use Cases, and Future Development
13. Chapter 10: Powered by Apache Arrow 14. Chapter 11: How to Leave Your Mark on Arrow 15. Chapter 12: Future Development and Plans 16. Index 17. Other Books You May Enjoy

Facehuggers implanting data

Hugging Face (https://huggingface.co) is a company based in New York City that started by developing a chatbot targeted at teens before they open sourced the ML model behind the chatbot. After open sourcing their model, Hugging Face changed up their business model so that it focused on constructing a full-blown platform for ML. As a platform, they host the following:

  • Git-based repositories for ML models
  • Datasets consisting of text, images, video, and audio
  • Web applications for providing small-scale ML demos

They also provide a variety of libraries for use in ML workflows, such as transformers, tokenizers, accelerators, and (importantly) a dataset library. This dataset library is what we’re going to focus on for the moment.

On the Hugging Face Hub, there is an extremely large number of datasets that are curated by a community of developers and data scientists. Many of these datasets are public, while others are private and...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime