Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Hands-On Machine Learning for Cybersecurity
Hands-On Machine Learning for Cybersecurity

Hands-On Machine Learning for Cybersecurity: Safeguard your system by making your machines intelligent using the Python ecosystem

eBook
€8.99 €29.99
Paperback
€36.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Table of content icon View table of contents Preview book icon Preview Book

Hands-On Machine Learning for Cybersecurity

Time Series Analysis and Ensemble Modeling

In this chapter, we will study two important concepts of machine learning: time series analysis and ensemble learning. These are important concepts in the field of machine learning.

We use these concepts to detect anomalies within a system. We analyze historic data and compare it with the current data to detect deviations from normal activities.

The topics that will be covered in this chapter are the following:

  • Time series and its different classes
  • Time series decomposition
  • Analysis of time series in cybersecurity
  • Prediction of DDoS attack
  • Ensemble learning methods and voting ensemble methods to detect cyber attacks

What is a time series?

A time series is defined as an array of data points that is arranged with respect to time. The data points are indicative of an activity that takes place at a time interval. One popular example is the total number of stocks that were traded at a certain time interval with other details like stock prices and their respective trading information at each second. Unlike a continuous time variable, these time series data points have a discrete value at different points of time. Hence, these are often referred to as discrete data variables. Time series data can be gathered over any minimum or maximum amount of time. There is no upper or lower bound to the period over which data is collected.

Time series data has the following:

  • Specific instances of time forming the timestamp
  • A start timestamp and an end timestamp
  • The total elapsed time for the instance

The...

Classes of time series models

Based on the use-case type that we have in hand, the relationship between the number of temporal sequences and time can be distributed among multiple classes. Problems bucketed into each of these classes have different machine learning algorithms to handle them.

Stochastic time series model

Stochastic processes are random mathematical objects that can be defined using random variables. These data points are known to randomly change over time. Stochastic processes can again be divided into three main classes that are dependent on historic data points. They are autoregressive (AR) models, the moving average (MA) model, and integrated (I) models. These models combine to form the autoregressive...

Time series decomposition

Time series decomposition is a better way of understanding the data in hand. Decomposing the model creates an abstract model that can be used for generalization of the data. Decomposition involves identifying trends and seasonal, cyclical, and irregular components of the data. Making sense of data with these components is the systematic type of modeling.

In the following section, we will look at these recurring properties and how they help analyze time series data.

Level

We have discussed moving averages with respect to time series before. The level can be defined as the average or mean of a bunch of time series data points.

...

Use cases for time series

In the Signal processing section, we will discuss the different fields where time series are utilized to extract meaningful information from very large datasets. Be it social media analysis, click stream trends, or system log generations, time series can be used to mine any data that has a similar time-sensitive approach to data collection and storage.

Signal processing

Digital signal processing uses time series analysis to identify a signal from a mixture of noise and signals. Signal processing uses various methods to perform this identification, like smoothing, correlation, convolution, and so on. Time series helps measure deviations from the stationary behaviors of signals. These drifts or deviations...

Time series analysis in cybersecurity

Computer attacks interrupt day-to-day services and cause data losses and network interruption. Time series analyses are popular machine learning methods that help to quantitatively detect anomalies or outliers in data, by either data fitting or forecasting. Time series analysis helps thwarting compromises and keep information loss to a minimum. The following graph shows the attacks mitigated on a routed platform:

Time series trends and seasonal spikes

Time series analysis can be used to detect attack attempts, like failed logins, using a time series model. Plotting login attempts identifies spikes (/) in failed logins. Such spikes are indicative of account takeover (ATO).

Time series identify another cyber security use case—data exfiltration is the process in which the unauthorized transfer of data takes place from a computer system to a malicious location. Time series can identify huge network data packets being transported out of the network. Data exfiltration could be because of either an outsider compromise or an insider threat. In a later section of the chapter, we will use ensemble learning methods to identify the source of the attack.

We will learn the details of the attack in the next section. The goal of this chapter is to be able to detect reconnaissance so that we are...

Predicting DDoS attacks

Now that we have identified a seasonality, the trend in the network data will baseline the data by fitting to a stochastic model. We have already defined systematic parameters, and we will apply them next.

ARMA

This is a weak stochastic stationary process, such that, when provided with a time series Xt, ARMA helps to forecast future values with respect to current values. ARMA consists of two actions:

  • The autoregression (p)
  • The moving average (q)

  • C = Constant
  • Et = White noise
  • θ = Parameters

ARIMA

ARIMA is a generalized version of ARMA...

Ensemble learning methods

Ensemble learning methods are used to improve performance by taking the cumulative results from multiple models to make a prediction. Ensemble models overcome the problem of overfitting by considering outputs of multiple models. This helps in overlooking modeling errors from any one model.

Ensemble learning can be a problem for time series models because every data point has a time dependency. However, if we choose to look at the data as a whole, we can overlook time dependency components. Time dependency components are conventional ensemble methods like bagging, boosting, random forests, and so on.

Types of ensembling

Ensembling of models to derive the best model performance can happen in many ways...

Voting ensemble method to detect cyber attacks

In the voting ensemble method, every model gets to make a prediction about the results of the model, and the decision on the model result is made on the majority votes or predictions made. There is another advanced level of the voting the ensemble method known as weighted voting. Here certain predictor models have more weights associated with their votes and thus get to make more privileged predictions:

  1. We start by importing the respective libraries:
import pandas
from sklearn import model_selection
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.ensemble import VotingClassifier
  1. We detect a cyber attack via a voting mechanism where we use algorithms like SCV, decision tree, and logistic regression. We finally use the voting classifier to choose...

Summary

In this chapter, we dealt with the theory of time series analysis and ensemble learning and with real-life use cases where these methods can be implemented. We took one of the most frequent examples of cybersecurity, DoS attacks, and introduced a method that will capture them beforehand.

In the next chapter, we will learn about segregating legitimate and lousy URLs.

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Learn machine learning algorithms and cybersecurity fundamentals
  • Automate your daily workflow by applying use cases to many facets of security
  • Implement smart machine learning solutions to detect various cybersecurity problems

Description

Cyber threats today are one of the costliest losses that an organization can face. In this book, we use the most efficient tool to solve the big problems that exist in the cybersecurity domain. The book begins by giving you the basics of ML in cybersecurity using Python and its libraries. You will explore various ML domains (such as time series analysis and ensemble modeling) to get your foundations right. You will implement various examples such as building system to identify malicious URLs, and building a program to detect fraudulent emails and spam. Later, you will learn how to make effective use of K-means algorithm to develop a solution to detect and alert you to any malicious activity in the network. Also learn how to implement biometrics and fingerprint to validate whether the user is a legitimate user or not. Finally, you will see how we change the game with TensorFlow and learn how deep learning is effective for creating models and training systems

Who is this book for?

This book is for the data scientists, machine learning developers, security researchers, and anyone keen to apply machine learning to up-skill computer security. Having some working knowledge of Python and being familiar with the basics of machine learning and cybersecurity fundamentals will help to get the most out of the book

What you will learn

  • Use machine learning algorithms with complex datasets to implement cybersecurity concepts
  • Implement machine learning algorithms such as clustering, k-means, and Naive Bayes to solve real-world problems
  • Learn to speed up a system using Python libraries with NumPy, Scikit-learn, and CUDA
  • Understand how to combat malware, detect spam, and fight financial fraud to mitigate cyber crimes
  • Use TensorFlow in the cybersecurity domain and implement real-world examples
  • Learn how machine learning and Python can be used in complex cyber issues
Estimated delivery fee Deliver to Austria

Premium delivery 7 - 10 business days

€17.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Dec 31, 2018
Length: 318 pages
Edition : 1st
Language : English
ISBN-13 : 9781788992282
Category :
Languages :
Concepts :
Tools :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Estimated delivery fee Deliver to Austria

Premium delivery 7 - 10 business days

€17.95
(Includes tracking information)

Product Details

Publication date : Dec 31, 2018
Length: 318 pages
Edition : 1st
Language : English
ISBN-13 : 9781788992282
Category :
Languages :
Concepts :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 123.97
Hands-On Machine Learning for Algorithmic Trading
€49.99
Hands-On Artificial Intelligence for Cybersecurity
€36.99
Hands-On Machine Learning for Cybersecurity
€36.99
Total 123.97 Stars icon
Banner background image

Table of Contents

12 Chapters
Basics of Machine Learning in Cybersecurity Chevron down icon Chevron up icon
Time Series Analysis and Ensemble Modeling Chevron down icon Chevron up icon
Segregating Legitimate and Lousy URLs Chevron down icon Chevron up icon
Knocking Down CAPTCHAs Chevron down icon Chevron up icon
Using Data Science to Catch Email Fraud and Spam Chevron down icon Chevron up icon
Efficient Network Anomaly Detection Using k-means Chevron down icon Chevron up icon
Decision Tree and Context-Based Malicious Event Detection Chevron down icon Chevron up icon
Catching Impersonators and Hackers Red Handed Chevron down icon Chevron up icon
Changing the Game with TensorFlow Chevron down icon Chevron up icon
Financial Fraud and How Deep Learning Can Mitigate It Chevron down icon Chevron up icon
Case Studies Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Half star icon Empty star icon Empty star icon 2.7
(6 Ratings)
5 star 33.3%
4 star 0%
3 star 0%
2 star 33.3%
1 star 33.3%
Filter icon Filter
Top Reviews

Filter reviews by




Endoplasmic Reticulum May 16, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Still reading it
Amazon Verified review Amazon
Navya Nov 16, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Very well written and helped clear the concepts. However, wish this book was not restricted only to Python and even snippets of R were included.
Amazon Verified review Amazon
countermode Feb 05, 2020
Full star icon Full star icon Empty star icon Empty star icon Empty star icon 2
This e-book cover topics that I was seeking suitable material for, so I was highly delighted to find a book on those topics. However, I soon discovered that the book is not at all self-explanatory in the sense that the author throws several important notions at the reader without any reference. For instance, in the chapter on time series analysis the author mentions ACF and PACF, "explaining" them with a few sentences. It took me several video lectures on YouTube (which are, of course, of diverse quality) to get the idea and some background in order to follow the author. I don't think that the concepts of ACF, PACF, auto-regression, moving average, ARMA, ARIMA etc. are "common folklore", so I wish the author had introduced them more carefully, or at least, if he had provided suitable references. What is good, at least, is that the reader gets the key words to look for so with quite some additional effort it is possible to follow the author.In the end, given the price, I am utterly disappointed; I've seen much better literature for much lower prices.
Amazon Verified review Amazon
Alvaro Feb 18, 2020
Full star icon Full star icon Empty star icon Empty star icon Empty star icon 2
I totally agree with and confirm the truth of the comment made by "countermode" He is fully right.The author of the book has touched upon a tremendous amount of complex concepts, something that you can tell in the Table of Contents, but then you see that she just devotes a couple of lines leaving the matter unexplained. Therefore, the reader is left to look for explanations elsewhere, like tutorials on the internet, videos etc.The reason is obvious. She has written a book of 300 pages, but the topics that she mentions would require around 1500-1800 pages.On page 46 she just breezes in about correlation time series and provides no explanation about the graphic that is shown. This is a pattern throughout the book.So, consider that you are going to have to devote about 10 times more time to learn about the topics she mentions.
Amazon Verified review Amazon
Luciano Montenegro Oct 01, 2023
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
Caso, a intenção foi ser prático com o material do livro, poderia ter tido um cuidado maior nos códigos utilizados. E apresentar referências para aprofundar determinados aspectos de ML. Achei o valor muito alto para o conteúdo apresentado. Os códigos simplesmente precisam ser atualizados para versão mais atuais de python.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela