Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Intelligent Agents with OpenAI Gym

You're reading from   Hands-On Intelligent Agents with OpenAI Gym Your guide to developing AI agents using deep reinforcement learning

Arrow left icon
Product type Paperback
Published in Jul 2018
Publisher Packt
ISBN-13 9781788836579
Length 254 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Palanisamy Palanisamy
Author Profile Icon Palanisamy
Palanisamy
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Introduction to Intelligent Agents and Learning Environments 2. Reinforcement Learning and Deep Reinforcement Learning FREE CHAPTER 3. Getting Started with OpenAI Gym and Deep Reinforcement Learning 4. Exploring the Gym and its Features 5. Implementing your First Learning Agent - Solving the Mountain Car problem 6. Implementing an Intelligent Agent for Optimal Control using Deep Q-Learning 7. Creating Custom OpenAI Gym Environments - CARLA Driving Simulator 8. Implementing an Intelligent - Autonomous Car Driving Agent using Deep Actor-Critic Algorithm 9. Exploring the Learning Environment Landscape - Roboschool, Gym-Retro, StarCraft-II, DeepMindLab 10. Exploring the Learning Algorithm Landscape - DDPG (Actor-Critic), PPO (Policy-Gradient), Rainbow (Value-Based) 11. Other Books You May Enjoy

Summary

In this chapter, we went through a custom Gym environment implementation step-by-step, starting with a template that laid out the bare-bones structure of an OpenAI Gym environment that provided all of the necessary interfaces to the agents. We also looked at how to register a custom environment implementation in the Gym registry so that we can use the familiar gym.make(ENV_NAME) command to create an instance of an existing environment. We then looked at how to create a Gym-compatible environment implementation for the UnrealEngine based on the open-source driving simulator, CARLA. We then quickly walked through the steps required to install and run CARLA and then started implementing the CarlaEnv class piece-by-piece, carefully covering all the important details involved in implementing custom environments compatible with OpenAI Gym.

In the next chapter, we will build...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime