Additional resource can be found via the following links:
- General Electric Digital Twins: https://www.ge.com/digital/predix/digital-twin
- Predix Digital Twins: https://www.slideshare.net/predixdevelopers/predix-transform-2016-e1-building-the-digital-twin-64632276
- The fall of RNN/LSTM: https://towardsdatascience.com/the-fall-of-rnn-lstm-2d1594c74ce0
- Keras LSTM Tutorial: http://adventuresinmachinelearning.com/keras-lstm-tutorial/
- Defining a Digital Twin Platform: https://medium.com/@iskerrett/defining-a-digital-twin-platform-de67586623de
- IBM Watson Digital Twins: https://www.ibm.com/internet-of-things/spotlight/digital-twin
- Microsoft Digital Twins: https://enterprise.microsoft.com/en-us/trends/microsoft-is-redefining-digital-twins-in-discrete-manufacturing/
- AWS SageMaker: https://aws.amazon.com/sagemaker/
- Google Digital Twin: https://cloud.google.com/blog/products...