Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Generative AI with LangChain

You're reading from   Generative AI with LangChain Build large language model (LLM) apps with Python, ChatGPT, and other LLMs

Arrow left icon
Product type Paperback
Published in Dec 2023
Publisher Packt
ISBN-13 9781835083468
Length 368 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ben Auffarth Ben Auffarth
Author Profile Icon Ben Auffarth
Ben Auffarth
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. What Is Generative AI? 2. LangChain for LLM Apps FREE CHAPTER 3. Getting Started with LangChain 4. Building Capable Assistants 5. Building a Chatbot Like ChatGPT 6. Developing Software with Generative AI 7. LLMs for Data Science 8. Customizing LLMs and Their Output 9. Generative AI in Production 10. The Future of Generative Models 11. Other Books You May Enjoy
12. Index

Conditioning LLMs

Pre-training an LLM on diverse data to learn patterns of language results in a base model that has a broad understanding of diverse topics. While base models such as GPT-4 can generate impressive text on a wide range of topics, conditioning them can enhance their capabilities in terms of task relevance, specificity, and coherence, and can guide the model’s behavior to be in line with what is considered ethical and appropriate. In this chapter, we’ll focus on fine-tuning and prompt techniques as two methods of conditioning.

Conditioning refers to a collection of methods used to direct the model’s generation of outputs. This includes not only prompt crafting but also more systemic techniques, such as fine-tuning the model on specific datasets to adapt its responses to certain topics or styles persistently.

Conditioning techniques enable LLMs to comprehend and execute complex instructions, delivering content that closely matches...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime