Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Exploratory Data Analysis with Python Cookbook

You're reading from   Exploratory Data Analysis with Python Cookbook Over 50 recipes to analyze, visualize, and extract insights from structured and unstructured data

Arrow left icon
Product type Paperback
Published in Jun 2023
Publisher Packt
ISBN-13 9781803231105
Length 382 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Ayodele Oluleye Ayodele Oluleye
Author Profile Icon Ayodele Oluleye
Ayodele Oluleye
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Chapter 1: Generating Summary Statistics 2. Chapter 2: Preparing Data for EDA FREE CHAPTER 3. Chapter 3: Visualizing Data in Python 4. Chapter 4: Performing Univariate Analysis in Python 5. Chapter 5: Performing Bivariate Analysis in Python 6. Chapter 6: Performing Multivariate Analysis in Python 7. Chapter 7: Analyzing Time Series Data in Python 8. Chapter 8: Analysing Text Data in Python 9. Chapter 9: Dealing with Outliers and Missing Values 10. Chapter 10: Performing Automated Exploratory Data Analysis in Python 11. Index 12. Other Books You May Enjoy

Removing outliers

A simple approach to handling outliers is to remove them completely before analyzing our dataset; this is also known as trimming. A major setback of this approach is the fact that we may lose some useful insights, especially if the outliers were legitimate. Therefore, it is very important to understand the context of the dataset before removing outliers. In certain scenarios, edge cases exist, and these cases can easily be tagged as outliers when the context isn’t properly understood. Edge cases are typically scenarios that are unlikely to occur. However, they can reveal important insights that will be overlooked if they are removed.

Trimming can be useful when the distribution of the data is important and we need to retain it. It is also useful when we have a minimal number of outliers.

We will explore how to remove outliers from our dataset using the drop method in pandas to achieve this.

Getting ready

We will work with the Amsterdam House Prices...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime