Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Driving Data Quality with Data Contracts

You're reading from   Driving Data Quality with Data Contracts A comprehensive guide to building reliable, trusted, and effective data platforms

Arrow left icon
Product type Paperback
Published in Jun 2023
Publisher Packt
ISBN-13 9781837635009
Length 206 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Andrew Jones Andrew Jones
Author Profile Icon Andrew Jones
Andrew Jones
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Part 1: Why Data Contracts?
2. Chapter 1: A Brief History of Data Platforms FREE CHAPTER 3. Chapter 2: Introducing Data Contracts 4. Part 2: Driving Data Culture Change with Data Contracts
5. Chapter 3: How to Get Adoption in Your Organization 6. Chapter 4: Bringing Data Consumers and Generators Closer Together 7. Chapter 5: Embedding Data Governance 8. Part 3: Designing and Implementing a Data Architecture Based on Data Contracts
9. Chapter 6: What Makes Up a Data Contract 10. Chapter 7: A Contract-Driven Data Architecture 11. Chapter 8: A Sample Implementation 12. Chapter 9: Implementing Data Contracts in Your Organization 13. Chapter 10: Data Contracts in Practice 14. Index 15. Other Books You May Enjoy

The enterprise data warehouse

We’ll start by looking at the data architecture that was prevalent in the late 1990s and early 2000s, which was centered around an enterprise data warehouse (EDW). As we discuss the architecture and its limitations, you’ll start to notice how many of those limitations continue to affect us today, despite over 20 years of advancement in tools and capabilities.

EDW is the collective term for a reporting and analytics solution. You’d typically engage with one or two big vendors who would provide these capabilities for you. It was expensive and only larger companies that could justify the investment.

The architecture was built around a large database in the center. This was likely an Oracle or MS SQL Server database, hosted on-premises (this was before the advent of cloud services). The extract, transform, and load (ETL) process was performed on data from source systems, or more accurately, the underlying database of those systems. That data could then be used to drive reporting and analytics.

The following diagram shows the EDW architecture:

Figure 1.1 – The EDW architecture

Figure 1.1 – The EDW architecture

Because this ETL ran against the database of the source system, reliability was a problem. It created a load on the database that could negatively impact the performance of the upstream service. That, and the limitations of the technology we were using at the time, meant we could do few transforms on the data.

We also had to update the ETL process as the database schema and the data evolved over time, relying on the data generators to let us know when that happened. Otherwise, the pipeline would fail.

Those who owned databases were somewhat aware of the ETL work and the business value it drove. There were few barriers between the data generators and consumers and good communication.

However, the major limitation of this architecture was the database used for the data warehouse. It was very expensive and, as it was deployed on-premises, was of a fixed size and hard to scale. That created a limit on how much data could be stored there and made available for analytics.

It became the responsibility of the ETL developers to decide what data should be available, depending on the business needs, and to build and maintain that ETL process by getting access to the source systems and their underlying databases.

And so, this is where the bottleneck was. The ETL developers had to control what data went in, and they were the only ones who could make data available in the warehouse. Data would only be made available if it met a strong business need, and that typically meant the only data in the warehouse was data that drove the company KPIs. If you wanted some data to do some analysis and it wasn’t already in there, you had to put a ticket in their backlog and hope for the best. If it did ever get prioritized, it was probably too late for what you wanted it for.

Note

Let’s illustrate how different roles worked together with this architecture with an example.

Our data generator, Vivianne, is a software engineer working on a service that writes its data to a database. She’s aware that some of the data from that database is extracted by a data analyst, Bukayo, and that is used to drive top-level business KPIs.

Bukayo can’t do much transformation on the data, due to the limitations of the technology and the cost of infrastructure, so the reporting he produces is largely on the raw data.

There are no defined expectations between Vivianne and Bukayo, and Bukayo relies on Vivianne telling him in advance whether there are any changes to the data or the schema.

The extraction is not reliable. The ETL process could affect the performance of the database, and so can be switched off when there is an incident. Schema and data changes are not always known in advance. The downstream database also has limited performance and cannot be easily scaled to deal with an increase in the data or usage.

Both Vivianne and Bukayo lack autonomy. Vivianne can’t change her database schema without getting approval from Bukayo. Bukayo can only get a subset of data, with little say over the format. Furthermore, any potential users downstream of Bukayo can only access the data he has extracted, severely limiting the accessibility of the organization’s data.

This won’t be the last time we see a bottleneck that prevents access to, and the use of, quality data. Let’s look now at the next generation of data architecture and the introduction of big data, which was made possible by the release of Apache Hadoop in 2006.

You have been reading a chapter from
Driving Data Quality with Data Contracts
Published in: Jun 2023
Publisher: Packt
ISBN-13: 9781837635009
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime