Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning with TensorFlow 2 and Keras

You're reading from   Deep Learning with TensorFlow 2 and Keras Regression, ConvNets, GANs, RNNs, NLP, and more with TensorFlow 2 and the Keras API

Arrow left icon
Product type Paperback
Published in Dec 2019
Publisher Packt
ISBN-13 9781838823412
Length 646 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Dr. Amita Kapoor Dr. Amita Kapoor
Author Profile Icon Dr. Amita Kapoor
Dr. Amita Kapoor
Sujit Pal Sujit Pal
Author Profile Icon Sujit Pal
Sujit Pal
Antonio Gulli Antonio Gulli
Author Profile Icon Antonio Gulli
Antonio Gulli
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Neural Network Foundations with TensorFlow 2.0 2. TensorFlow 1.x and 2.x FREE CHAPTER 3. Regression 4. Convolutional Neural Networks 5. Advanced Convolutional Neural Networks 6. Generative Adversarial Networks 7. Word Embeddings 8. Recurrent Neural Networks 9. Autoencoders 10. Unsupervised Learning 11. Reinforcement Learning 12. TensorFlow and Cloud 13. TensorFlow for Mobile and IoT and TensorFlow.js 14. An introduction to AutoML 15. The Math Behind Deep Learning 16. Tensor Processing Unit 17. Other Books You May Enjoy
18. Index

Creating your own embedding using gensim

We will create an embedding using a small text corpus, called text8. The text8 dataset is the first 108 bytes the Large Text Compression Benchmark, which consists of the first 109 bytes of English Wikipedia [7]. The text8 dataset is accessible from within the gensim API as an iterable of tokens, essentially a list of tokenized sentences. To download the text8 corpus, create a Word2Vec model from it, and save it for later use, run the following few lines of code (available in create_embedding_with_text8.py in the source code for this chapter):

import gensim.downloader as api
from gensim.models import Word2Vec
dataset = api.load("text8")
model = Word2Vec(dataset)
model.save("data/text8-word2vec.bin")

This will train a Word2Vec model on the text8 dataset and save it as a binary file. The Word2Vec model has many parameters, but we will just use the defaults. In this case it trains a CBOW model (sg=0) with...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime