Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Database Design and Modeling with Google Cloud

You're reading from   Database Design and Modeling with Google Cloud Learn database design and development to take your data to applications, analytics, and AI

Arrow left icon
Product type Paperback
Published in Dec 2023
Publisher Packt
ISBN-13 9781804611456
Length 234 pages
Edition 1st Edition
Concepts
Arrow right icon
Author (1):
Arrow left icon
Abirami Sukumaran Abirami Sukumaran
Author Profile Icon Abirami Sukumaran
Abirami Sukumaran
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Part 1:Database Model: Business and Technical Design Considerations
2. Chapter 1: Data, Databases, and Design FREE CHAPTER 3. Chapter 2: Handling Data on the Cloud 4. Part 2:Structured Data
5. Chapter 3: Database Modeling for Structured Data 6. Chapter 4: Setting Up a Fully Managed RDBMS 7. Chapter 5: Designing an Analytical Data Warehouse 8. Part 3:Semi-Structured, Unstructured Data, and NoSQL Design
9. Chapter 6: Designing for Semi-Structured Data 10. Chapter 7: Unstructured Data Management 11. Part 4:DevOps and Databases
12. Chapter 8: DevOps and Databases 13. Part 5:Data to AI
14. Chapter 9: Data to AI – Modeling Your Databases for Analytics and ML 15. Chapter 10: Looking Ahead – Designing for LLM Applications 16. Index 17. Other Books You May Enjoy

What this book covers

Chapter 1, Data, Databases, and Design, will help us explore all the basics related to data, database, and modeling. You will learn all the general considerations you need to have while working with them.

Chapter 2, Handling Data on the Cloud, will help us dive into the details of cloud computing, and its different types, and explore the use cases and applications. By the end of this chapter, you’ll have a clear understanding of cloud computing, its types, use cases, benefits, applications, and considerations.

Chapter 3, Database Modeling for Structured Data, discusses structured data, its properties, types, use cases, key considerations, data modeling best practices, SQL basics, and some hands-on data modeling and query experiments.

Chapter 4, Setting up a Fully Managed RDBMS, takes the structured database design to hands-on learning with a fully managed cloud relational database. You will learn how to set up and configure your instance, how to create databases and objects in the database, and how to programmatically connect to the database and access data.

Chapter 5, Designing an Analytical Data Warehouse, will move on to designing for analytical data and take it to hands-on learning with a fully managed cloud data warehouse. You will learn how to set up and configure, create datasets and objects, query, and perform sample analytics on the data.

Chapter 6, Designing for Semi-structured Data, will show you the fundamentals of semi-structured data with examples, real-world use cases, characteristics of semi-structured data, design considerations, and components of a document database.

Chapter 7, Unstructured Data Management, will show you the fundamentals of unstructured data with examples, real-world use cases, how to store, manage, and perform analytics and with unstructured data.

Chapter 8, DevOps and Databases, discusses DevOps and operational attributes of database management like upgrades, security, monitoring, scalability, performance, SLA and SLOs, data federation, CI/CD, migration, and so on. We will also discuss how Google Cloud simplifies the design decisions for these operational considerations.

Chapter 9, Data to AI – Modeling Your Databases for Analytics and ML, explores some key considerations and best practices while designing for analytics, ML, and AI with cloud databases, covering topics like modeling considerations for analytics and ML, analytics, ETL, and the journey of data to AI.

Chapter 10, Looking Ahead – Designing for LLM Applications, will set the stage for data modeling for LLM applications by covering the evolution and basics of LLM, the difference between ML and generative AI applications, the ethical and responsible practices and considerations, and finally the real-world use cases and hands-on implementation to extend your database application to include LLM insights.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime