Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
C++ Programming for Linux Systems

You're reading from   C++ Programming for Linux Systems Create robust enterprise software for Linux and Unix-based operating systems

Arrow left icon
Product type Paperback
Published in Sep 2023
Publisher Packt
ISBN-13 9781805129004
Length 288 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Stanimir Lukanov Stanimir Lukanov
Author Profile Icon Stanimir Lukanov
Stanimir Lukanov
Desislav Andreev Desislav Andreev
Author Profile Icon Desislav Andreev
Desislav Andreev
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Part 1:Securing the Fundamentals FREE CHAPTER
2. Chapter 1: Getting Started with Linux Systems and the POSIX Standard 3. Chapter 2: Learning More about Process Management 4. Chapter 3: Navigating through the Filesystems 5. Chapter 4: Diving Deep into the C++ Object 6. Chapter 5: Handling Errors with C++ 7. Part 2:Advanced Techniques for System Programming
8. Chapter 6: Concurrent System Programming with C++ 9. Chapter 7: Proceeding with Inter-Process Communication 10. Chapter 8: Using Clocks, Timers, and Signals in Linux 11. Chapter 9: Understanding the C++ Memory Model 12. Chapter 10: Using Coroutines in C++ for System Programming 13. Index 14. Other Books You May Enjoy

Introducing the system calls for thread manipulation in C++

As discussed in Chapter 1, we use threads to execute separate procedures in parallel. They exist only in the scope of a process and their creation overhead is bigger than the thread’s one, so we consider them lightweight, although they have their own stack and task_struct. They are almost self-sufficient, except they rely on the parent process to exist. That process is also known as the main thread. All others that are created by it need to join it to be initiated. You could create thousands of threads simultaneously on the system, but they will not run in parallel. You can run only n parallel tasks, where n is the number of the system’s concurrent ALUs (occasionally, these are the hardware’s concurrent threads). The others will be scheduled according to the OS’s task-scheduling mechanism. Let’s look at the simplest example of a POSIX thread interface:

pthread_t new_thread;
pthread_create...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime