Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Scala for Machine Learning

You're reading from   Scala for Machine Learning Leverage Scala and Machine Learning to construct and study systems that can learn from data

Arrow left icon
Product type Paperback
Published in Dec 2014
Publisher
ISBN-13 9781783558742
Length 624 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Patrick R. Nicolas Patrick R. Nicolas
Author Profile Icon Patrick R. Nicolas
Patrick R. Nicolas
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Getting Started FREE CHAPTER 2. Hello World! 3. Data Preprocessing 4. Unsupervised Learning 5. Naïve Bayes Classifiers 6. Regression and Regularization 7. Sequential Data Models 8. Kernel Models and Support Vector Machines 9. Artificial Neural Networks 10. Genetic Algorithms 11. Reinforcement Learning 12. Scalable Frameworks A. Basic Concepts Index

Numerical optimization

This section briefly introduces the different optimization algorithms that can be applied to minimize the loss function, with or without a penalty term. These algorithms are described in greater detail in the Summary of optimization techniques section in Appendix A, Basic Concepts.

First, let's define the least squares problem. The minimization of the loss function consists of nullifying the first order derivatives, which in turn generates a system of D equations (also known as gradient equations), D being the number of regression weights (parameters). The weights are iteratively computed by solving the system of equations using a numerical optimization algorithm.

Note

The definition of the least squares-based loss function is as follows:

Numerical optimization

The generation of gradient equations with a Jacobian J matrix (refer to the Jacobian and Hessian matrices section in Appendix A, Basic Concepts) after minimization of the loss function L is described as follows:

Numerical optimization

Iterative approximation...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime