In this section, we will implement the k-nearest neighbors (KNN) algorithm to build a model on our IBM attrition dataset. Of course, we are already aware from EDA that we have a class imbalance problem in the dataset at hand. However, we will not be treating the dataset for class imbalance for now as this is an entire area on its own and several techniques are available in this area and therefore out of scope for the ML ensembling topic covered in this chapter. We will, for now, consider the dataset as is and build ML models. Also, for class imbalance datasets, Kappa or precision and recall or the area under the curve of the receiver operating characteristic (AUROC) are the appropriate metrics to use. However, for simplicity, we will use accuracy as a performance metric. We will adapt 10-fold cross validation repeated...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand