We are already aware that RNNs are cyclical graphs, unlike feedforward networks, which are acyclic directional graphs. In feedforward networks, the error derivatives are calculated from the layer above. However, in an RNN we don't have such layering to perform error derivative calculations. A simple solution to this problem is to unroll the RNN and make it similar to a feedforward network. To enable this, the hidden units from the RNN are replicated at each time step. Each time step replication forms a layer that is similar to layers in a feedforward network. Each time step t layer connects to all possible layers in the time step t+1. Therefore, we randomly initialize the weights, unroll the network, and then use backpropagation to optimize the weights in the hidden layer. The lowest layer is initialized by passing parameters. These parameters...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine