Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
R for Data Science Cookbook (n)

You're reading from   R for Data Science Cookbook (n) Over 100 hands-on recipes to effectively solve real-world data problems using the most popular R packages and techniques

Arrow left icon
Product type Paperback
Published in Jul 2016
Publisher
ISBN-13 9781784390815
Length 452 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Yu-Wei, Chiu (David Chiu) Yu-Wei, Chiu (David Chiu)
Author Profile Icon Yu-Wei, Chiu (David Chiu)
Yu-Wei, Chiu (David Chiu)
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Functions in R FREE CHAPTER 2. Data Extracting, Transforming, and Loading 3. Data Preprocessing and Preparation 4. Data Manipulation 5. Visualizing Data with ggplot2 6. Making Interactive Reports 7. Simulation from Probability Distributions 8. Statistical Inference in R 9. Rule and Pattern Mining with R 10. Time Series Mining with R 11. Supervised Machine Learning 12. Unsupervised Machine Learning Index

Selecting an ARIMA model

Using the exponential smoothing method requires that residuals are non-correlated. However, in real-life cases, it is quite unlikely that none of the continuous values correlate with each other. Instead, one can use ARIMA in R to build a time series model that takes autocorrelation into consideration. In this recipe, we introduce how to use ARIMA to build a smoothing model.

Getting ready

In this recipe, we use time series data simulated from an ARIMA process.

How to do it…

Please perform the following steps to select the ARIMA model's parameters:

  1. First, simulate an ARIMA process and generate time series data with the arima.sim function:
    > set.seed(123)
    > ts.sim <- arima.sim(list(order = c(1,1,0), ar = 0.7), n = 100)
    > plot(ts.sim)
    
    How to do it…

    Figure 14: Simulated time series data

  2. We can then take the difference of the time series:
    > ts.sim.diff <- diff(ts.sim)
    
  3. Plot the differenced time series:
    > plot(ts.sim.diff)
    
    How to do it…

    Figure 15: A differenced time series...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image