Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Quantum Computing and Blockchain in Business

You're reading from   Quantum Computing and Blockchain in Business Exploring the applications, challenges, and collision of quantum computing and blockchain

Arrow left icon
Product type Paperback
Published in Mar 2020
Publisher Packt
ISBN-13 9781838647766
Length 334 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Arunkumar Krishnakumar Arunkumar Krishnakumar
Author Profile Icon Arunkumar Krishnakumar
Arunkumar Krishnakumar
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Introduction to Quantum Computing and Blockchain 2. Quantum Computing – Key Discussion Points FREE CHAPTER 3. The Data Economy 4. The Impact on Financial Services 5. Interview with Dr. Dave Snelling, Fujitsu Fellow 6. The Impact on Healthcare and Pharma 7. Interview with Dr. B. Rajathilagam, Head of AI Research, Amrita Vishwa Vidyapeetham 8. The Impact on Governance 9. Interview with Max Henderson, Senior Data Scientist, Rigetti and QxBranch 10. The Impact on Smart Cities and Environment 11. Interview with Sam McArdle, Quantum Computing Researcher at the University of Oxford 12. The Impact on Chemistry 13. The Impact on Logistics 14. Interview with Dinesh Nagarajan, Partner, IBM 15. Quantum-Safe Blockchain 16. Nation States and Cyberwars 17. Conclusion – Blue Skies 18. Other Books You May Enjoy
19. Index

Conclusion

Deep technologies such as quantum computing and Blockchain can bring paradigm shifts in the way the chemical industry innovates and operates. Quantum computing use cases in chemistry are similar to those in healthcare, as they are largely about simulating and calculating chemical reactions using quantum algorithms and devices.

There are two other key acceleration factors for chemistry applications of quantum computing. One is the aspect that molecules can be modeled more naturally within qubits using different circuitry. We saw trapped ion qubits that were more suitable for chemistry than superconductor qubit circuits. The other interesting aspect is the ability to use NISQ devices for chemistry. NISQ devices can be perfect for chemistry as noise can be used as a feature in modeling behaviors of molecules.

This is not quite the case in quantum computing solutions for cryptography; therefore, in their ability to leverage noisy qubits, chemistry...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime