Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Deep Learning

You're reading from   Python Deep Learning Next generation techniques to revolutionize computer vision, AI, speech and data analysis

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781786464453
Length 406 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (4):
Arrow left icon
Peter Roelants Peter Roelants
Author Profile Icon Peter Roelants
Peter Roelants
Daniel Slater Daniel Slater
Author Profile Icon Daniel Slater
Daniel Slater
Valentino Zocca Valentino Zocca
Author Profile Icon Valentino Zocca
Valentino Zocca
Gianmario Spacagna Gianmario Spacagna
Author Profile Icon Gianmario Spacagna
Gianmario Spacagna
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Machine Learning – An Introduction FREE CHAPTER 2. Neural Networks 3. Deep Learning Fundamentals 4. Unsupervised Feature Learning 5. Image Recognition 6. Recurrent Neural Networks and Language Models 7. Deep Learning for Board Games 8. Deep Learning for Computer Games 9. Anomaly Detection 10. Building a Production-Ready Intrusion Detection System Index

Intuition and justification


We have already mentioned in Chapter 3, Deep Learning Fundamentals, the paper published in 2012 by Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton titled: ImageNet Classification with Deep Convolutional Neural Networks. Though the genesis of convolutional may be traced back to the '80s, that was one of the first papers that highlighted the deep importance of convolutional networks in image processing and recognition, and currently almost no deep neural network used for image recognition can work without some convolutional layer.

An important problem that we have seen when working with classical feed-forward networks is that they may overfit, especially when working with medium to large images. This is often due to the fact that neural networks have a very large number of parameters, in fact in classical neural nets all neurons in a layer are connected to each and every neuron in the next. When the number of parameters is large, over-fitting is more likely...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime