Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Pandas 1.x Cookbook

You're reading from   Pandas 1.x Cookbook Practical recipes for scientific computing, time series analysis, and exploratory data analysis using Python

Arrow left icon
Product type Paperback
Published in Feb 2020
Publisher Packt
ISBN-13 9781839213106
Length 626 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Theodore Petrou Theodore Petrou
Author Profile Icon Theodore Petrou
Theodore Petrou
Matthew Harrison Matthew Harrison
Author Profile Icon Matthew Harrison
Matthew Harrison
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Pandas Foundations 2. Essential DataFrame Operations FREE CHAPTER 3. Creating and Persisting DataFrames 4. Beginning Data Analysis 5. Exploratory Data Analysis 6. Selecting Subsets of Data 7. Filtering Rows 8. Index Alignment 9. Grouping for Aggregation, Filtration, and Transformation 10. Restructuring Data into a Tidy Form 11. Combining Pandas Objects 12. Time Series Analysis 13. Visualization with Matplotlib, Pandas, and Seaborn 14. Debugging and Testing Pandas 15. Other Books You May Enjoy
16. Index

Slicing time series intelligently

DataFrame selection and slicing was covered previously. When the DataFrame has a DatetimeIndex, even more opportunities arise for selection and slicing.

In this recipe, we will use partial date matching to select and slice a DataFrame with a DatetimeIndex.

How to do it…

  1. Read in the Denver crimes dataset from the hdf5 file crimes.h5, and output the column data types and the first few rows. The hdf5 file format allows efficient storage of large amounts of data and is different from a CSV text file:
    >>> crime = pd.read_hdf('data/crime.h5', 'crime')
    >>> crime.dtypes
    OFFENSE_TYPE_ID              category
    OFFENSE_CATEGORY_ID          category
    REPORTED_DATE          datetime64[ns]
    GEO_LON                       float64
    GEO_LAT                       float64
    NEIGHBORHOOD_ID              category
    IS_CRIME                        int64
    IS_TRAFFIC                      int64
    dtype...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime