Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
NumPy Beginner's Guide

You're reading from   NumPy Beginner's Guide An action packed guide using real world examples of the easy to use, high performance, free open source NumPy mathematical library.

Arrow left icon
Product type Paperback
Published in Apr 2013
Publisher Packt
ISBN-13 9781782166085
Length 310 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Numpy Beginner's Guide Second Edition
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. NumPy Quick Start FREE CHAPTER 2. Beginning with NumPy Fundamentals 3. Get in Terms with Commonly Used Functions 4. Convenience Functions for Your Convenience 5. Working with Matrices and ufuncs 6. Move Further with NumPy Modules 7. Peeking into Special Routines 8. Assure Quality with Testing 9. Plotting with Matplotlib 10. When NumPy is Not Enough – SciPy and Beyond 11. Playing with Pygame Pop Quiz Answers Index

Time for action – plotting stock volume


Stock volume varies a lot, so let’s plot it on a logarithmic scale. First we need to download historical data from Yahoo Finance, extract the dates and volume, create locators and a date formatter, create the figure, and add to it a subplot. We already went through these steps in the previous Time for action tutorial, so we will skip them here.

  1. Plot the volume using a logarithmic scale.

    plt.semilogy(dates, volume)

    Now set the locators and format the x-axis as dates. Instructions for these steps can be found in the previous Time for action tutorial as well. The stock volume using a logarithmic scale for DISH would appear as follows:

What just happened?

We plotted stock volume using a logarithmic scale (see logy.py):

from matplotlib.finance import quotes_historical_yahoo
from matplotlib.dates import DateFormatter
from matplotlib.dates import DayLocator
from matplotlib.dates import MonthLocator
import sys
from datetime import date
import matplotlib.pyplot...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime