Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
MLOps with Red Hat OpenShift

You're reading from   MLOps with Red Hat OpenShift A cloud-native approach to machine learning operations

Arrow left icon
Product type Paperback
Published in Jan 2024
Publisher Packt
ISBN-13 9781805120230
Length 238 pages
Edition 1st Edition
Tools
Arrow right icon
Authors (2):
Arrow left icon
Ross Brigoli Ross Brigoli
Author Profile Icon Ross Brigoli
Ross Brigoli
Faisal Masood Faisal Masood
Author Profile Icon Faisal Masood
Faisal Masood
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Part 1: Introduction FREE CHAPTER
2. Chapter 1: Introduction to MLOps and OpenShift 3. Part 2: Provisioning and Configuration
4. Chapter 2: Provisioning an MLOps Platform in the Cloud 5. Chapter 3: Building Machine Learning Models with OpenShift 6. Part 3: Operating ML Workloads
7. Chapter 4: Managing a Model Training Workflow 8. Chapter 5: Deploying ML Models as a Service 9. Chapter 6: Operating ML Workloads 10. Chapter 7: Building a Face Detector Using the Red Hat ML Platform 11. Index 12. Other Books You May Enjoy

Using GPU acceleration for model training

In the previous section, you customized software components that your team needs to build models. In this section, you will see how RHODS makes it easy for you to use specific hardware for your workbench.

Imagine that you are working on a simple supervised learning model, and you do not need any specific hardware, such as a GPU, to complete your work. If you work on laptops, then the hardware is fixed and shipped with your laptop. You cannot change it dynamically and it would be expensive for organizations to give every data scientist specialized GPU hardware. It’s worse if there is a new model of the GPU and you already bought an older version for your team. RHODS enables you to provision hardware on-demand for your team, so if one member needs a GPU, they can just select it from the UI and start using it. Then, when their work is done, the GPU is released back to the hardware pool. This dynamic nature not only reduces costs but...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image