Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Matplotlib

You're reading from   Mastering Matplotlib A practical guide that takes you beyond the basics of matplotlib and gives solutions to plot complex data

Arrow left icon
Product type Paperback
Published in Jun 2015
Publisher
ISBN-13 9781783987542
Length 292 pages
Edition 1st Edition
Languages
Arrow right icon
Toc

Table of Contents (11) Chapters Close

Preface 1. Getting Up to Speed FREE CHAPTER 2. The matplotlib Architecture 3. matplotlib APIs and Integrations 4. Event Handling and Interactive Plots 5. High-level Plotting and Data Analysis 6. Customization and Configuration 7. Deploying matplotlib in Cloud Environments 8. matplotlib and Big Data 9. Clustering for matplotlib Index

Preface

In just over a decade, matplotlib has grown to offer the Python scientific computing community a world-class plotting and visualization library. When combined with related projects, such as Jupyter, NumPy, SciPy, and SymPy, matplotlib competes head-to-head with commercial software, which is far more established in the industry. Furthermore, the growth experienced by this open source software project is reflected again and again by individuals around the world, who make their way through the thorny wilds that face the newcomer and who develop into strong intermediate users with the potential to be very productive.

In essence, Mastering matplotlib is a very practical book. Yet every chapter was written considering this learning process, as well as a larger view of the same. It is not just the raw knowledge that defines how far developers progress in their goal. It is also the ability of motivated individuals to apply meta-levels of analysis to the problem and the obstacles that must be surmounted. Implicit in the examples that are provided in each chapter are multiple levels of analysis, which are integral to the mastery of the subject matter. These levels of analysis involve the processes of defining the problem, anticipating potential solutions, evaluating approaches without losing focus, and enriching your experience with a wider range of useful projects.

Finding resources that facilitate developers in their journey towards advanced knowledge and beyond can be difficult. This is not due to the lack of materials. Rather, it is because of the complex interaction of learning styles, continually improving codebases with strong legacies, and the very flexible nature of the Python programming language itself. The matplotlib developers who aspire to attain an advanced level, must tackle all of this and more. This book aims to be a guide for those in search of such mastery.

lock icon The rest of the chapter is locked
Next Section arrow right
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime