In this chapter, we looked at the very important machine learning methods of creating an ensemble model by stacking and then multiclass classification. In stacking, we used base models (learners) to create predicted probabilities that were used on input features to another model (super learner) to make our final predictions. Indeed, the stacked method showed slight improvement over the individual base models. As for multiclass methods, we worked on using a multiclass classifier as well as taking a binary classification method and applying it to a multiclass problem using the one-versus-all technique. As a side task, we also incorporated two sampling techniques (upsampling and Synthetic Minority Oversampling Technique) to balance the classes. Also significant was the utilization of two very powerful R packages, caretEnsemble and mlr. These methods and packages are powerful additions to an R machine learning...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine