Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Machine Learning with R

You're reading from   Mastering Machine Learning with R Master machine learning techniques with R to deliver insights for complex projects

Arrow left icon
Product type Paperback
Published in Oct 2015
Publisher
ISBN-13 9781783984527
Length 400 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Cory Lesmeister Cory Lesmeister
Author Profile Icon Cory Lesmeister
Cory Lesmeister
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. A Process for Success 2. Linear Regression – The Blocking and Tackling of Machine Learning FREE CHAPTER 3. Logistic Regression and Discriminant Analysis 4. Advanced Feature Selection in Linear Models 5. More Classification Techniques – K-Nearest Neighbors and Support Vector Machines 6. Classification and Regression Trees 7. Neural Networks 8. Cluster Analysis 9. Principal Components Analysis 10. Market Basket Analysis and Recommendation Engines 11. Time Series and Causality 12. Text Mining A. R Fundamentals Index

Other linear model considerations

Before moving on, there are two additional linear model topics that we need to discuss. The first is the inclusion of a qualitative feature, and the second is an interaction term; both are explained in the following sections.

Qualitative feature

A qualitative feature, also referred to as a factor, can take on two or more levels such as Male/Female or Bad/Neutral/Good. If we have a feature with two levels, say gender, then we can create what is known as an indicator or dummy feature, arbitrarily assigning one level as 0 and the other as 1. If we create a model with just the indicator, our linear model would still follow the same formulation as before, that is, Y = B0 + B1x + e. If we code the feature as male is equal to zero and female is equal to one, then the expectation for male would just be the intercept, B0, while for female it would be B0 + B1x. In the situation where you have more than two levels of the feature, you can create n-1 indicators; so, for...

You have been reading a chapter from
Mastering Machine Learning with R
Published in: Oct 2015
Publisher:
ISBN-13: 9781783984527
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime