Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Managing Data Science

You're reading from   Managing Data Science Effective strategies to manage data science projects and build a sustainable team

Arrow left icon
Product type Paperback
Published in Nov 2019
Publisher Packt
ISBN-13 9781838826321
Length 290 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Kirill Dubovikov Kirill Dubovikov
Author Profile Icon Kirill Dubovikov
Kirill Dubovikov
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

1. Section 1: What is Data Science? FREE CHAPTER
2. What You Can Do with Data Science 3. Testing Your Models 4. Understanding AI 5. Section 2: Building and Sustaining a Team
6. An Ideal Data Science Team 7. Conducting Data Science Interviews 8. Building Your Data Science Team 9. Section 3: Managing Various Data Science Projects
10. Managing Innovation 11. Managing Data Science Projects 12. Common Pitfalls of Data Science Projects 13. Creating Products and Improving Reusability 14. Section 4: Creating a Development Infrastructure
15. Implementing ModelOps 16. Building Your Technology Stack 17. Conclusion 18. Other Books You May Enjoy

Managing Data Science Projects

In the previous chapter, we looked at innovation management. We developed recipes that can help find ideas for data science projects and matched them with their market demand. In this chapter, we will cover the non-technical side of data science project management by looking at how data science projects stand out from general software development projects. We'll look at common reasons for their failure and develop an approach that will lower the risks of data science projects. We will conclude this chapter by diving into the art and science of project estimates.

In this chapter, we will look at how we can manage projects from start to end by covering the following topics:

  • Understanding data science project failure
  • Exploring the data science project life cycle
  • Choosing a project management methodology
  • Choosing a methodology that suits your project...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image