Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Julia 1.0 Programming

You're reading from   Julia 1.0 Programming Dynamic and high-performance programming to build fast scientific applications

Arrow left icon
Product type Paperback
Published in Sep 2018
Publisher
ISBN-13 9781788999090
Length 196 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ivo Balbaert Ivo Balbaert
Author Profile Icon Ivo Balbaert
Ivo Balbaert
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Installing the Julia Platform FREE CHAPTER 2. Variables, Types, and Operations 3. Functions 4. Control Flow 5. Collection Types 6. More on Types, Methods, and Modules 7. Metaprogramming in Julia 8. I/O, Networking, and Parallel Computing 9. Running External Programs 10. The Standard Library and Packages 11. Other Books You May Enjoy

Using DataFrames


If you measure n variables (each of a different type) of a single object, then you get a table with n columns for each object row. If there are m observations, then we have m rows of data. For example, given the student grades as data, you might want to know compute the average grade for each socioeconomic group, where grade and socioeconomic group are both columns in the table, and there is one row per student.

DataFrame is the most natural representation to work with such a (m x n) table of data. They are similar to Pandas DataFrames in Python or data.frame in R. DataFrame is a more specialized tool than a normal array for working with tabular and statistical data, and it is defined in the DataFrames package, a popular Julia library for statistical work. Install it in your environment by typing in add DataFrames in the REPL. Then, import it into your current workspace with using DataFrames. Do the same for the DataArrays and RDatasets packages (which contain a collection...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image