Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Java for Data Science

You're reading from   Java for Data Science Examine the techniques and Java tools supporting the growing field of data science

Arrow left icon
Product type Paperback
Published in Jan 2017
Publisher Packt
ISBN-13 9781785280115
Length 386 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Jennifer L. Reese Jennifer L. Reese
Author Profile Icon Jennifer L. Reese
Jennifer L. Reese
Richard M. Reese Richard M. Reese
Author Profile Icon Richard M. Reese
Richard M. Reese
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with Data Science FREE CHAPTER 2. Data Acquisition 3. Data Cleaning 4. Data Visualization 5. Statistical Data Analysis Techniques 6. Machine Learning 7. Neural Networks 8. Deep Learning 9. Text Analysis 10. Visual and Audio Analysis 11. Mathematical and Parallel Techniques for Data Analysis 12. Bringing It All Together

Summary

Machine learning is concerned with developing techniques that allow the applications to learn without having to be explicitly programmed to solve a problem. This flexibility allows such applications to be used in more varied settings with little to no modifications.

We saw how training data is used to create a model. Once the model has been trained, the model is evaluated using testing data. Both the training data and testing data come from the problem domain. Once trained, the model is used with other input data to make predictions.

We learned how the Weka Java API is used to create decision trees. This tree consists of internal nodes that represent different attributes of the problem. The leaves of the tree represent results. Since there are many ways of constructing a tree, part of the job of a decision tree is to create the best tree.

Support vector machines divide a dataset into sections thus classifying elements in the dataset. This classification s based on the attributes of...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime