We will now look at implementing an autonomous self-driving racing car that learns to drive by itself on a racing track using deep Q networks. The driver and the car will act as the agent, while the racing track and its surroundings act as the environment. We will be using an OpenAI Gym CarRacing-v0 framework as the environment. The states and the rewards are going to be presented to the agent by the environment, while the agent will act upon those by taking appropriate actions. The states are in the form of images taken from a camera in front of the car. The actions that the environment accepts are in the form of the three-dimensional vector a ∈ R3 where the first component is used for turning left, the second component is used for moving forward and the third component is used for moving right. The agent will interact with the...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand