Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Unsupervised Learning with Python

You're reading from   Hands-On Unsupervised Learning with Python Implement machine learning and deep learning models using Scikit-Learn, TensorFlow, and more

Arrow left icon
Product type Paperback
Published in Feb 2019
Publisher Packt
ISBN-13 9781789348279
Length 386 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Giuseppe Bonaccorso Giuseppe Bonaccorso
Author Profile Icon Giuseppe Bonaccorso
Giuseppe Bonaccorso
Giuseppe Bonaccorso Giuseppe Bonaccorso
Author Profile Icon Giuseppe Bonaccorso
Giuseppe Bonaccorso
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Getting Started with Unsupervised Learning FREE CHAPTER 2. Clustering Fundamentals 3. Advanced Clustering 4. Hierarchical Clustering in Action 5. Soft Clustering and Gaussian Mixture Models 6. Anomaly Detection 7. Dimensionality Reduction and Component Analysis 8. Unsupervised Neural Network Models 9. Generative Adversarial Networks and SOMs 10. Assessments 11. Other Books You May Enjoy

Summary

In this chapter, we discussed some quite common neural models that are employed for solving unsupervised tasks. Autoencoders allow you to find the low-dimensional representation of a dataset without specific limits to its complexity. In particular, the use of deep convolutional networks helps to detect and learn both high-level and low-level geometrical features that can lead to a very accurate reconstruction when the internal code is much shorter than the original dimensionality too. We also discussed how to add sparsity to an autoencoder, and how to use these models to denoise samples. A slightly different variant of a standard autoencoder is a variational autoencoder, which is a generative model that can improve the ability to learn the data-generating process from which a dataset is supposed to be drawn.

Sanger's and Rubner-Tavan's networks are neural models...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime