Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Reinforcement Learning with Python

You're reading from   Hands-On Reinforcement Learning with Python Master reinforcement and deep reinforcement learning using OpenAI Gym and TensorFlow

Arrow left icon
Product type Paperback
Published in Jun 2018
Publisher Packt
ISBN-13 9781788836524
Length 318 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Sudharsan Ravichandiran Sudharsan Ravichandiran
Author Profile Icon Sudharsan Ravichandiran
Sudharsan Ravichandiran
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Introduction to Reinforcement Learning 2. Getting Started with OpenAI and TensorFlow FREE CHAPTER 3. The Markov Decision Process and Dynamic Programming 4. Gaming with Monte Carlo Methods 5. Temporal Difference Learning 6. Multi-Armed Bandit Problem 7. Deep Learning Fundamentals 8. Atari Games with Deep Q Network 9. Playing Doom with a Deep Recurrent Q Network 10. The Asynchronous Advantage Actor Critic Network 11. Policy Gradients and Optimization 12. Capstone Project – Car Racing Using DQN 13. Recent Advancements and Next Steps 14. Assessments 15. Other Books You May Enjoy

Monte Carlo methods

The Monte Carlo method finds approximate solutions through random sampling, that is, it approximates the probability of an outcome by running multiple trails. It is a statistical technique to find an approximate answer through sampling. Let's better understand Monte Carlo intuitively with an example.

Fun fact: Monte Carlo is named after Stanislaw Ulam's uncle, who often borrowed money from his relatives to gamble in a Monte Carlo casino.

Estimating the value of pi using Monte Carlo

Imagine a quadrant of a circle is placed inside a square, as shown next, and we generate some random points inside the square. You can see that some of the points fall inside the circle while others are outside the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime