Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Q-Learning with Python

You're reading from   Hands-On Q-Learning with Python Practical Q-learning with OpenAI Gym, Keras, and TensorFlow

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher Packt
ISBN-13 9781789345803
Length 212 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Nazia Habib Nazia Habib
Author Profile Icon Nazia Habib
Nazia Habib
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Section 1: Q-Learning: A Roadmap FREE CHAPTER
2. Brushing Up on Reinforcement Learning Concepts 3. Getting Started with the Q-Learning Algorithm 4. Setting Up Your First Environment with OpenAI Gym 5. Teaching a Smartcab to Drive Using Q-Learning 6. Section 2: Building and Optimizing Q-Learning Agents
7. Building Q-Networks with TensorFlow 8. Digging Deeper into Deep Q-Networks with Keras and TensorFlow 9. Section 3: Advanced Q-Learning Challenges with Keras, TensorFlow, and OpenAI Gym
10. Decoupling Exploration and Exploitation in Multi-Armed Bandits 11. Further Q-Learning Research and Future Projects 12. Assessments 13. Other Books You May Enjoy

Chapter 3, Setting Up Your First Environment with OpenAI Gym

  1. You can do this by cloning the source instead of installing the package from pip. Further instructions are available in the Gym documentation.
  2. The term state is commonly used in the terminology of solving Markov decision processes, and the term observation is often used when describing RL environment state spaces. Both terms are equivalent in this context.
  3. Calling env.reset() resets the environment's state and returns the environment's current observation or state variable.
  4. The task will end when the done variable is set to True or the reward is set to 20, depending on your implementation. Both conditions indicate that the task has been solved.
  5. Setting env.s will manually change the state of the environment. This is bad practice when implementing an RL strategy; the state should not be set manually when solving...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime