Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Neural Networks with TensorFlow 2.0

You're reading from   Hands-On Neural Networks with TensorFlow 2.0 Understand TensorFlow, from static graph to eager execution, and design neural networks

Arrow left icon
Product type Paperback
Published in Sep 2019
Publisher Packt
ISBN-13 9781789615555
Length 358 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Paolo Galeone Paolo Galeone
Author Profile Icon Paolo Galeone
Paolo Galeone
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: Neural Network Fundamentals
2. What is Machine Learning? FREE CHAPTER 3. Neural Networks and Deep Learning 4. Section 2: TensorFlow Fundamentals
5. TensorFlow Graph Architecture 6. TensorFlow 2.0 Architecture 7. Efficient Data Input Pipelines and Estimator API 8. Section 3: The Application of Neural Networks
9. Image Classification Using TensorFlow Hub 10. Introduction to Object Detection 11. Semantic Segmentation and Custom Dataset Builder 12. Generative Adversarial Networks 13. Bringing a Model to Production 14. Other Books You May Enjoy

Conditional GANs

Mirza et al. in their paper, Conditional Generative Adversarial Nets, introduced a conditional version of the GAN framework. This modification is extremely easy to understand and is the foundation of amazing GAN applications that are widely used in today's world.

Some of the most astonishing GAN applications, such as the generation of a street scene from a semantic label to the colorization of an image given a grayscale input, pass through image super-resolution as specialized versions of the conditional GAN idea.

Conditional GANs are based on the idea that GANs can be extended to a conditional model if both G and D are conditioned on some additional information, y. This additional information can be any kind of additional information, from class labels to semantic maps, or data from other modalities. It is possible to perform this conditioning by feeding...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime