Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Ensemble Learning with R

You're reading from   Hands-On Ensemble Learning with R A beginner's guide to combining the power of machine learning algorithms using ensemble techniques

Arrow left icon
Product type Paperback
Published in Jul 2018
Publisher Packt
ISBN-13 9781788624145
Length 376 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Prabhanjan Narayanachar Tattar Prabhanjan Narayanachar Tattar
Author Profile Icon Prabhanjan Narayanachar Tattar
Prabhanjan Narayanachar Tattar
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Introduction to Ensemble Techniques FREE CHAPTER 2. Bootstrapping 3. Bagging 4. Random Forests 5. The Bare Bones Boosting Algorithms 6. Boosting Refinements 7. The General Ensemble Technique 8. Ensemble Diagnostics 9. Ensembling Regression Models 10. Ensembling Survival Models 11. Ensembling Time Series Models 12. What's Next?
A. Bibliography Index

Summary

Bagging is essentially an ensembling method that consists of homogeneous base learners. Bagging was introduced as a bootstrap aggregation method, and we saw some of the advantages of the bootstrap method in Chapter 2, Bootstrapping. The advantage of the bagging method is the stabilization of the predictions. This chapter began with modifications for the classification tree, and we saw different methods of improvising the performance of a decision tree so that the tree does not overfit the data. The bagging of the decision tress and the related tricks followed in the next section. We then introduced k-NN as an important classifier and illustrated it with a simple example. The chapter concluded with the bagging extension of the k-NN classifier.

Bagging helps in reducing the variance of the decision trees. However, the trees of the two bootstrap samples are correlated since a lot of common observations generate them. In the next chapter, we will look at innovative resampling, which...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime