Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Data Structures and Algorithms with Python – Third Edition

You're reading from   Hands-On Data Structures and Algorithms with Python – Third Edition Store, manipulate, and access data effectively and boost the performance of your applications

Arrow left icon
Product type Paperback
Published in Jul 2022
Publisher Packt
ISBN-13 9781801073448
Length 496 pages
Edition 3rd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Dr. Basant Agarwal Dr. Basant Agarwal
Author Profile Icon Dr. Basant Agarwal
Dr. Basant Agarwal
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Python Data Types and Structures FREE CHAPTER 2. Introduction to Algorithm Design 3. Algorithm Design Techniques and Strategies 4. Linked Lists 5. Stacks and Queues 6. Trees 7. Heaps and Priority Queues 8. Hash Tables 9. Graphs and Algorithms 10. Searching 11. Sorting 12. Selection Algorithms 13. String Matching Algorithms 14. Other Books You May Enjoy
15. Index
Appendix: Answers to the Questions

Asymptotic notation

To analyze the time complexity of an algorithm, the rate of growth (order of growth) is very important when the input size is large. When the input size becomes large, we only consider the higher-order terms and ignore the insignificant terms. In asymptotic analysis, we analyze the efficiency of algorithms for large input sizes considering the higher order of growth and ignoring the multiplicative constants and lower-order terms.

We compare two algorithms with respect to input size rather than the actual runtime and measure how the time taken increases with an increased input size. The algorithm which is more efficient asymptotically is generally considered a better algorithm as compared to the other algorithm. The following asymptotic notations are commonly used to calculate the running time complexity of an algorithm:

  • θ notation: It denotes the worst-case running time complexity with a tight bound.
  • Ο notation: It denotes the...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image