Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Getting Started with Streamlit for Data Science

You're reading from   Getting Started with Streamlit for Data Science Create and deploy Streamlit web applications from scratch in Python

Arrow left icon
Product type Paperback
Published in Aug 2021
Publisher Packt
ISBN-13 9781800565500
Length 282 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Tyler Richards Tyler Richards
Author Profile Icon Tyler Richards
Tyler Richards
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: Creating Basic Streamlit Applications
2. Chapter 1: An Introduction to Streamlit FREE CHAPTER 3. Chapter 2: Uploading, Downloading, and Manipulating Data 4. Chapter 3: Data Visualization 5. Chapter 4: Using Machine Learning with Streamlit 6. Chapter 5: Deploying Streamlit with Streamlit Sharing 7. Section 2: Advanced Streamlit Applications
8. Chapter 6: Beautifying Streamlit Apps 9. Chapter 7: Exploring Streamlit Components 10. Chapter 8: Deploying Streamlit Apps with Heroku and AWS 11. Section 3: Streamlit Use Cases
12. Chapter 9: Improving Job Applications with Streamlit 13. Chapter 10: The Data Project – Prototyping Projects in Streamlit 14. Chapter 11: Using Streamlit for Teams 15. Chapter 12: Streamlit Power Users 16. Other Books You May Enjoy

Streamlit's built-in graphing functions

There are three built-in functions for graphing – st.line_chart(), st.bar_chart(), and st.area_chart(). They all work similarly by trying to figure out what variables you're already trying to graph, and then put them into a line, bar, or area chart, respectively. In our dataset, we have a variable called dbh, which is the width of the tree at chest height. First, we can group our DataFrame by dbh, and then push that directly to the line chart, bar chart, and area chart. The following code should group our dataset by width, count the unique trees of each width, and then make a line, bar, and area chart of each:

import streamlit as st
import pandas as pd
st.title('SF Trees')
 st.write('This app analyses trees in San Francisco using'
         ' a dataset kindly provided by SF DPW')
 trees_df = pd.read_csv('trees.csv')
 df_dbh_grouped = pd.DataFrame(trees_df.groupby(...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime