Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Game Physics Cookbook

You're reading from   Game Physics Cookbook Discover over 100 easy-to-follow recipes to help you implement efficient game physics and collision detection in your games

Arrow left icon
Product type Paperback
Published in Mar 2017
Publisher Packt
ISBN-13 9781787123663
Length 480 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Gabor Szauer Gabor Szauer
Author Profile Icon Gabor Szauer
Gabor Szauer
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Vectors FREE CHAPTER 2. Matrices 3. Matrix Transformations 4. 2D Primitive Shapes 5. 2D Collisions 6. 2D Optimizations 7. 3D Primitive Shapes 8. 3D Point Tests 9. 3D Shape Intersections 10. 3D Line Intersections 11. Triangles and Meshes 12. Models and Scenes 13. Camera and Frustum 14. Constraint Solving 15. Manifolds and Impulses 16. Springs and Joints A. Advanced Topics Index

Point and line


To test if a point is on a line, or to get the point on a line closest to a test point, we first have to project the point onto the line. This projection will result in a floating point value, t. We use this new t value to find the distance of the point along the line segment using the distance(t) = start + t * (end - start)function. The start point of the line is at t = 0, the end point is at t = 1. We have to take two edge cases into account, when t is less than 0 or greater than 1:

Getting ready

We are going to implement two functions, one to get the point on a line closest to a test point and one to determine if a test point is on a line. The ClosestPoint function is going to project the test point onto the line and evaluate the parametric function, distance(t) = start + t * (end - start).

To determine if a test point is on a line segment, we still need the point on the segment closest to the test point. We are then able to measure the distance between the test point and...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image