Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Labeling in Machine Learning with Python

You're reading from   Data Labeling in Machine Learning with Python Explore modern ways to prepare labeled data for training and fine-tuning ML and generative AI models

Arrow left icon
Product type Paperback
Published in Jan 2024
Publisher Packt
ISBN-13 9781804610541
Length 398 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Vijaya Kumar Suda Vijaya Kumar Suda
Author Profile Icon Vijaya Kumar Suda
Vijaya Kumar Suda
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Part 1: Labeling Tabular Data
2. Chapter 1: Exploring Data for Machine Learning FREE CHAPTER 3. Chapter 2: Labeling Data for Classification 4. Chapter 3: Labeling Data for Regression 5. Part 2: Labeling Image Data
6. Chapter 4: Exploring Image Data 7. Chapter 5: Labeling Image Data Using Rules 8. Chapter 6: Labeling Image Data Using Data Augmentation 9. Part 3: Labeling Text, Audio, and Video Data
10. Chapter 7: Labeling Text Data 11. Chapter 8: Exploring Video Data 12. Chapter 9: Labeling Video Data 13. Chapter 10: Exploring Audio Data 14. Chapter 11: Labeling Audio Data 15. Chapter 12: Hands-On Exploring Data Labeling Tools 16. Index 17. Other Books You May Enjoy

Using k-means clustering to label regression data

In this section, we are going to use the unsupervised K-means clustering method to label the regression data. We use K-means to cluster data points into groups or clusters based on their similarity.

Once the clustering is done, we can compute the average label value for each cluster by taking the mean of the labeled data points that belong to that cluster. This is because the labeled data points in a cluster are likely to have similar label values since they are similar in terms of their feature values.

Figure 3.6 – Basic k-means clustering with no. of clusters =3

Figure 3.6 – Basic k-means clustering with no. of clusters =3

For example, let’s say we have a dataset of house prices with which we want to predict the price of a house based on features such as size, location, number of rooms, and so on. We have some labeled data points that consist of the features and their corresponding prices, but we also have some unlabeled data points with the same...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image