Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Automating Security Detection Engineering

You're reading from   Automating Security Detection Engineering A hands-on guide to implementing Detection as Code

Arrow left icon
Product type Paperback
Published in Jun 2024
Publisher Packt
ISBN-13 9781837636419
Length 252 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Dennis Chow Dennis Chow
Author Profile Icon Dennis Chow
Dennis Chow
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Part 1: Automating Detection Inputs and Deployments FREE CHAPTER
2. Chapter 1: Detection as Code Architecture and Lifecycle 3. Chapter 2: Scoping and Automating Threat-Informed Defense Inputs 4. Chapter 3: Developing Core CI/CD Pipeline Functions 5. Chapter 4: Leveraging AI for Use Case Development 6. Part 2: Automating Validations within CI/CD Pipelines
7. Chapter 5: Implementing Logical Unit Tests 8. Chapter 6: Creating Integration Tests 9. Chapter 7: Leveraging AI for Testing 10. Part 3: Monitoring Program Effectiveness
11. Chapter 8: Monitoring Detection Health 12. Chapter 9: Measuring Program Efficiency 13. Chapter 10: Operating Patterns by Maturity 14. Index 15. Other Books You May Enjoy

Summary

In this chapter, we learned how to create unit tests and implement linting augmentation with AI. We examined security considerations and the return on investment as we progress further with utilizing LLMs to augment our CI/CD pipeline. Specifically, we utilized the Poe SDK in Python to interact with a purpose-built bot for analyzing our use cases. We followed up the lab by complementing unit testing with linting in pull requests using CodeRabbit’s AI service. Finally, we wrapped up by considering multiple-LLM model validation and a voting calculation to help bolster our tests.

In the upcoming chapter, we’ll pivot to a metric-focused view of how to measure the success of the detections implemented using our detection-as-code strategy.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image