Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Applying Math with Python

You're reading from   Applying Math with Python Over 70 practical recipes for solving real-world computational math problems

Arrow left icon
Product type Paperback
Published in Dec 2022
Publisher Packt
ISBN-13 9781804618370
Length 376 pages
Edition 2nd Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Sam Morley Sam Morley
Author Profile Icon Sam Morley
Sam Morley
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Chapter 1: An Introduction to Basic Packages, Functions, and Concepts 2. Chapter 2: Mathematical Plotting with Matplotlib FREE CHAPTER 3. Chapter 3: Calculus and Differential Equations 4. Chapter 4: Working with Randomness and Probability 5. Chapter 5: Working with Trees and Networks 6. Chapter 6: Working with Data and Statistics 7. Chapter 7: Using Regression and Forecasting 8. Chapter 8: Geometric Problems 9. Chapter 9: Finding Optimal Solutions 10. Chapter 10: Improving Your Productivity 11. Index 12. Other Books You May Enjoy

To get the most out of this book

You will need to have a basic knowledge of Python. We don’t assume any knowledge of mathematics, although if you are familiar with some basic mathematical concepts, you will better understand the context and details of the techniques we discuss.

The only requirement throughout this book is a recent version of Python – at least Python 3.6, but higher versions are preferable. (The code for this edition has been tested on Python 3.10, but should work on earlier versions too.) You might prefer to use the Anaconda distribution of Python, which comes with many of the packages and tools required in this book. If this is the case, you should use the conda package manager to install the packages. Python is supported on all major operating systems – Windows, macOS, and Linux – and on many platforms.

The packages that are used in this book and their versions at the time of writing: NumPy 1.23.3, SciPy 1.9.1 Matplotlib 3.6.0, Jax 0.3.13 (and jaxlib 0.3.10), Diffrax 0.1.2, PyMC 4.2.2, pandas 1.4.3 Bokeh 2.4.3, NetworkX 3.5.3, Scikit-learn 1.1.2, StatsModels 0.13.2, Shapely 1.8.4, NashPy 0.0.35, Pint 0.20.1, Uncertainties 3.1.7, Xarray 2022.11.0, NetCDF4 1.6.1, Geopandas 0.12.1, CartoPy 0.21.0, Cerberus 1.3.4, Cython 0.29.32, Dask 2022.10.2.

Software/hardware covered in the book

Operating system requirements

Python 3.10

Windows, macOS, or Linux

If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

You may prefer to work through the code samples in this book in a Jupyter notebook rather than in a simple Python file. There are one or two places in this book where you might need to repeat plotting commands, as plots cannot be updated in later cells in the way that is shown here.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime