Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Advanced Deep Learning with Keras

You're reading from   Advanced Deep Learning with Keras Apply deep learning techniques, autoencoders, GANs, variational autoencoders, deep reinforcement learning, policy gradients, and more

Arrow left icon
Product type Paperback
Published in Oct 2018
Publisher Packt
ISBN-13 9781788629416
Length 368 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Rowel Atienza Rowel Atienza
Author Profile Icon Rowel Atienza
Rowel Atienza
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Introducing Advanced Deep Learning with Keras FREE CHAPTER 2. Deep Neural Networks 3. Autoencoders 4. Generative Adversarial Networks (GANs) 5. Improved GANs 6. Disentangled Representation GANs 7. Cross-Domain GANs 8. Variational Autoencoders (VAEs) 9. Deep Reinforcement Learning 10. Policy Gradient Methods Other Books You May Enjoy Index

Denoising autoencoder (DAE)


We're now going to build an autoencoder with a practical application. Firstly, let's paint a picture and imagine that the MNIST digits images were corrupted by noise, thus making it harder for humans to read. We're able to build a Denoising Autoencoder (DAE) to remove the noise from these images. Figure 3.3.1 shows us three sets of MNIST digits. The top rows of each set (for example, MNIST digits 7, 2, 1, 9, 0, 6, 3, 4, 9) are the original images. The middle rows show the inputs to DAE, which are the original images corrupted by noise. The last rows show the outputs of DAE:

Figure 3.3.1: Original MNIST digits (top rows), corrupted original images (middle rows) and denoised images (last rows)

Figure 3.3.2: The input to the denoising autoencoder is the corrupted image. The output is the clean or denoised image. The latent vector is assumed to be 16-dim.

As shown in Figure 3.3.2, the denoising autoencoder has practically the same structure as the autoencoder for MNIST...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime