Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
15 Math Concepts Every Data Scientist Should Know

You're reading from   15 Math Concepts Every Data Scientist Should Know Understand and learn how to apply the math behind data science algorithms

Arrow left icon
Product type Paperback
Published in Aug 2024
Publisher Packt
ISBN-13 9781837634187
Length 510 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
David Hoyle David Hoyle
Author Profile Icon David Hoyle
David Hoyle
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Part 1: Essential Concepts FREE CHAPTER
2. Chapter 1: Recap of Mathematical Notation and Terminology 3. Chapter 2: Random Variables and Probability Distributions 4. Chapter 3: Matrices and Linear Algebra 5. Chapter 4: Loss Functions and Optimization 6. Chapter 5: Probabilistic Modeling 7. Part 2: Intermediate Concepts
8. Chapter 6: Time Series and Forecasting 9. Chapter 7: Hypothesis Testing 10. Chapter 8: Model Complexity 11. Chapter 9: Function Decomposition 12. Chapter 10: Network Analysis 13. Part 3: Selected Advanced Concepts
14. Chapter 11: Dynamical Systems 15. Chapter 12: Kernel Methods 16. Chapter 13: Information Theory 17. Chapter 14: Non-Parametric Bayesian Methods 18. Chapter 15: Random Matrices 19. Index 20. Other Books You May Enjoy

Bayesian modeling

The posterior <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mi>P</mi><mfenced open="(" close=")"><mrow><munder><mi>θ</mi><mo stretchy="true">_</mo></munder><mo>|</mo><mtext>Data</mtext></mrow></mfenced></mrow></mrow></math> encapsulates the philosophy of Bayesian modeling and changes how we view the model represented by <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:munder underaccent="false"><mml:mrow><mml:mi>θ</mml:mi></mml:mrow><mml:mo>_</mml:mo></mml:munder></mml:math>. In Bayesian modeling, there is not a single “correct” underlying value of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:munder underaccent="false"><mml:mrow><mml:mi>θ</mml:mi></mml:mrow><mml:mo>_</mml:mo></mml:munder></mml:math>, for which we construct uncertain estimates. Instead, different values of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:munder underaccent="false"><mml:mrow><mml:mi>θ</mml:mi></mml:mrow><mml:mo>_</mml:mo></mml:munder></mml:math> have different probabilities given the available data or evidence. <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:munder underaccent="false"><mml:mrow><mml:mi>θ</mml:mi></mml:mrow><mml:mo>_</mml:mo></mml:munder></mml:math> is a random variable, and we update what we think is the distribution of that random variable using Bayes’ theorem and the additional data or information we receive.

With that statement about the philosophical interpretation of the posterior made, we now move on to how we use the posterior in a calculational sense. There are two potential ways in which we can use the posterior distribution:

  • To evaluate expectation values. Here, we are using the posterior as it is intended, as a distribution. Here, the posterior is used to calculate predictions over lots of different models. This is called Bayesian model averaging...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime