Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Machine Learning Solutions Architect Handbook

You're reading from   The Machine Learning Solutions Architect Handbook Practical strategies and best practices on the ML lifecycle, system design, MLOps, and generative AI

Arrow left icon
Product type Paperback
Published in Apr 2024
Publisher Packt
ISBN-13 9781805122500
Length 602 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
David Ping David Ping
Author Profile Icon David Ping
David Ping
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Navigating the ML Lifecycle with ML Solutions Architecture FREE CHAPTER 2. Exploring ML Business Use Cases 3. Exploring ML Algorithms 4. Data Management for ML 5. Exploring Open-Source ML Libraries 6. Kubernetes Container Orchestration Infrastructure Management 7. Open-Source ML Platforms 8. Building a Data Science Environment Using AWS ML Services 9. Designing an Enterprise ML Architecture with AWS ML Services 10. Advanced ML Engineering 11. Building ML Solutions with AWS AI Services 12. AI Risk Management 13. Bias, Explainability, Privacy, and Adversarial Attacks 14. Charting the Course of Your ML Journey 15. Navigating the Generative AI Project Lifecycle 16. Designing Generative AI Platforms and Solutions 17. Other Books You May Enjoy
18. Index

Data management architecture for ML

Depending on the scale of your ML initiatives, it is important to consider different data management architecture patterns to effectively support them.For small-scale ML projects characterized by limited data scope, a small team size, and minimal cross-functional dependencies, a purpose-built data pipeline tailored to meet the specific project requirements can be a suitable approach. For instance, if your project involves working with structured data sourced from an existing data warehouse and a publicly available dataset, you can consider developing a straightforward data pipeline. This pipeline would extract the necessary data from the data warehouse and public domain and store it in a dedicated storage location owned by the project team. This data extraction process can be scheduled as needed to facilitate further analysis and processing. The diagram below illustrates a simplified data management flow designed to support a small-scale ML project...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image