K-nearest neighbors is a non-parametric machine learning model in which the model memorizes the training observation for classifying the unseen test data. It can also be called instance-based learning. This model is often termed as lazy learning, as it does not learn anything during the training phase like regression, random forest, and so on. Instead it starts working only during the testing/evaluation phase to compare the given test observations with nearest training observations, which will take significant time in comparing each test data point. Hence, this technique is not efficient on big data; also, performance does deteriorate when the number of variables is high due to the curse of dimensionality.
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia