Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Statistics for Machine Learning
Statistics for Machine Learning

Statistics for Machine Learning: Techniques for exploring supervised, unsupervised, and reinforcement learning models with Python and R

eBook
$29.99 $43.99
Paperback
$54.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Statistics for Machine Learning

Parallelism of Statistics and Machine Learning

At first glance, machine learning seems to be distant from statistics. However, if we take a deeper look into them, we can draw parallels between both. In this chapter, we will deep dive into the details. Comparisons have been made between linear regression and lasso/ridge regression in order to provide a simple comparison between statistical modeling and machine learning. These are basic models in both worlds and are good to start with.

In this chapter, we will cover the following:

  • Understanding of statistical parameters and diagnostics
  • Compensating factors in machine learning models to equate statistical diagnostics
  • Ridge and lasso regression
  • Comparison of adjusted R-square with accuracy

Comparison between regression and machine learning models

Linear regression and machine learning models both try to solve the same problem in different ways. In the following simple example of a two-variable equation fitting the best possible plane, regression models try to fit the best possible hyperplane by minimizing the errors between the hyperplane and actual observations. However, in machine learning, the same problem has been converted into an optimization problem in which errors are modeled in squared form to minimize errors by altering the weights.

In statistical modeling, samples are drawn from the population and the model will be fitted on sampled data. However, in machine learning, even small numbers such as 30 observations would be good enough to update the weights at the end of each iteration; in a few cases, such as online learning, the model will be updated with...

Compensating factors in machine learning models

Compensating factors in machine learning models to equate statistical diagnostics is explained with the example of a beam being supported by two supports. If one of the supports doesn't exist, the beam will eventually fall down by moving out of balance. A similar analogy is applied for comparing statistical modeling and machine learning methodologies here.

The two-point validation is performed on the statistical modeling methodology on training data using overall model accuracy and individual parameters significance test. Due to the fact that either linear or logistic regression has less variance by shape of the model itself, hence there would be very little chance of it working worse on unseen data. Hence, during deployment, these models do not incur too many deviated results.

However, in the machine learning space, models...

Machine learning models - ridge and lasso regression

In linear regression, only the residual sum of squares (RSS) is minimized, whereas in ridge and lasso regression, a penalty is applied (also known as shrinkage penalty) on coefficient values to regularize the coefficients with the tuning parameter λ.

When λ=0, the penalty has no impact, ridge/lasso produces the same result as linear regression, whereas λ -> ∞ will bring coefficients to zero:

Before we go deeper into ridge and lasso, it is worth understanding some concepts on Lagrangian multipliers. One can show the preceding objective function in the following format, where the objective is just RSS subjected to cost constraint (s) of budget. For every value of λ, there is an s such that will provide the equivalent equations, as shown for the overall objective function with a...

Summary

In this chapter, you have learned the comparison of statistical models with machine learning models applied on regression problems. The multiple linear regression methodology has been illustrated with a step-by-step iterative process using the statsmodel package by removing insignificant and multi-collinear variables. Whereas, in machine learning models, removal of variables does not need to be removed and weights get adjusted automatically, but have parameters which can be tuned to fine-tune the model fit, as machine learning models learn by themselves based on data rather than exclusively being modeled by removing variables manually. Though we got almost the same accuracy results between linear regression and lasso/ridge regression methodologies, by using highly powerful machine learning models such as random forest, we can achieve much better uplift in model accuracy...

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Learn about the statistics behind powerful predictive models with p-value, ANOVA, and F- statistics.
  • Implement statistical computations programmatically for supervised and unsupervised learning through K-means clustering.
  • Master the statistical aspect of Machine Learning with the help of this example-rich guide to R and Python.

Description

Complex statistics in machine learning worry a lot of developers. Knowing statistics helps you build strong machine learning models that are optimized for a given problem statement. This book will teach you all it takes to perform the complex statistical computations that are required for machine learning. You will gain information on the statistics behind supervised learning, unsupervised learning, reinforcement learning, and more. You will see real-world examples that discuss the statistical side of machine learning and familiarize yourself with it. You will come across programs for performing tasks such as modeling, parameter fitting, regression, classification, density collection, working with vectors, matrices, and more. By the end of the book, you will have mastered the statistics required for machine learning and will be able to apply your new skills to any sort of industry problem.

Who is this book for?

This book is intended for developers with little to no background in statistics, who want to implement Machine Learning in their systems. Some programming knowledge in R or Python will be useful.

What you will learn

  • Understand the statistical and machine learning fundamentals necessary to
  • build models
  • Understand the major differences and parallels between the statistical way and the machine learning way to solve problems
  • Learn how to prepare data and feed models by using the appropriate machine learning algorithms from the more-than-adequate R and Python packages
  • Analyze the results and tune the model appropriately to your own predictive goals
  • Understand the concepts of the statistics required for machine learning
  • Introduce yourself to necessary fundamentals required for building supervised and unsupervised deep learning models
  • Learn reinforcement learning and its application in the field of artificial intelligence domain

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jul 21, 2017
Length: 442 pages
Edition : 1st
Language : English
ISBN-13 : 9781788291224
Category :
Languages :
Concepts :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Jul 21, 2017
Length: 442 pages
Edition : 1st
Language : English
ISBN-13 : 9781788291224
Category :
Languages :
Concepts :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 153.97
Machine Learning Algorithms
$54.99
Python Machine Learning, Second Edition
$43.99
Statistics for Machine Learning
$54.99
Total $ 153.97 Stars icon

Table of Contents

9 Chapters
Journey from Statistics to Machine Learning Chevron down icon Chevron up icon
Parallelism of Statistics and Machine Learning Chevron down icon Chevron up icon
Logistic Regression Versus Random Forest Chevron down icon Chevron up icon
Tree-Based Machine Learning Models Chevron down icon Chevron up icon
K-Nearest Neighbors and Naive Bayes Chevron down icon Chevron up icon
Support Vector Machines and Neural Networks Chevron down icon Chevron up icon
Recommendation Engines Chevron down icon Chevron up icon
Unsupervised Learning Chevron down icon Chevron up icon
Reinforcement Learning Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.7
(6 Ratings)
5 star 50%
4 star 0%
3 star 33.3%
2 star 0%
1 star 16.7%
Filter icon Filter
Top Reviews

Filter reviews by




Amazon Customer Nov 20, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Useful
Amazon Verified review Amazon
Enrico P. Apr 13, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Un ottimo libro per chi vuole approfondire la parte statistica del Machine Learning (molto approfondito) e del Deep Learning (in maniera superficiale) ricco di esempi e di codice in Python e R; adatto per chi è ad una seconda fase di approfondimento delle stesse tematiche.
Amazon Verified review Amazon
David Oct 22, 2017
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Just finished this book as a primer for my machine learning course this week. It is an excellent resource, that has both Python and R examples throughout the text. Some examples are only in Python when R has no library or functionality for the example. It is easy to read and a determined student could read it in about 4 hours. The examples used are great at illustrating the different algorithms. Great book and glad I was able to find it this past week before I dive back into the classroom.
Amazon Verified review Amazon
Mark Richmond Jun 02, 2020
Full star icon Full star icon Full star icon Empty star icon Empty star icon 3
I find this book to be incredibly frustrating. It's a good book on the whole, a lot of very good and useful information is presented and the author clearly knows what he's talking about. However, the editing is unbelievably bad. All the figures and even the equations are poor quality, they would not be accepted in a journal so why is this quality of figure ok in a book? The figures are so bad that it's often hard to see what the author is even talking about. The author sometimes mentions the colours in a figure, but all the figures are black and white! The author clearly isn't a native English speaker, this is fine of course, but someone who is really should have corrected this before it was published. There are so many sentences which simply don't make sense. Some of the topics are hard enough to understand without having to decipher what sentences are supposed to say.On the whole, now that I have the book I think it's worth persisting to get the value from it because there's a lot of good stuff in here. But I find it hard to recommend that anyone buy this without these issues being fixed.
Amazon Verified review Amazon
rajdeep banerjee Sep 26, 2018
Full star icon Full star icon Full star icon Empty star icon Empty star icon 3
Pros:Concise and to the point with panda and R codes.Cons:Needs some more mathematical details for better understanding.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.