Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Solutions Architect's Handbook

You're reading from   Solutions Architect's Handbook Kick-start your career as a solutions architect by learning architecture design principles and strategies

Arrow left icon
Product type Paperback
Published in Jan 2022
Publisher Packt
ISBN-13 9781801816618
Length 590 pages
Edition 2nd Edition
Arrow right icon
Authors (2):
Arrow left icon
Saurabh Shrivastava Saurabh Shrivastava
Author Profile Icon Saurabh Shrivastava
Saurabh Shrivastava
Neelanjali Srivastav Neelanjali Srivastav
Author Profile Icon Neelanjali Srivastav
Neelanjali Srivastav
Arrow right icon
View More author details
Toc

Table of Contents (22) Chapters Close

Preface 1. The Meaning of Solution Architecture 2. Solution Architects in an Organization FREE CHAPTER 3. Attributes of the Solution Architecture 4. Principles of Solution Architecture Design 5. Cloud Migration and Hybrid Cloud Architecture Design 6. Solution Architecture Design Patterns 7. Performance Considerations 8. Security Considerations 9. Architectural Reliability Considerations 10. Operational Excellence Considerations 11. Cost Considerations 12. DevOps and Solution Architecture Framework 13. Data Engineering for Solution Architecture 14. Machine Learning Architecture 15. The Internet of Things Architecture 16. Quantum Computing 17. Rearchitecting Legacy Systems 18. Solution Architecture Document 19. Learning Soft Skills to Become a Better Solution Architect 20. Other Books You May Enjoy
21. Index

Building machine learning architecture

Creating an ML pipeline consists of multiple phases and requires iterative improvement. Building a robust and scalable workflow from a loose collection of code is a complex and time-consuming process, and many data scientists don't have experience building workflows. An ML workflow can be defined as an orchestrated sequence that involves multiple steps. Data scientists and ML developers first need to package numerous code recipes and then specify the order they should execute, keeping track of code, data, and model parameter dependencies between each step.

Added complexity to ML workflows warrants monitoring changes in data used for training and predictions because changes in the data could introduce bias, leading to inaccurate predictions. In addition to monitoring the data, data scientists and ML developers also need to monitor model predictions to ensure they are accurate and don't become skewed toward particular results over...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime