Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Predictive Analytics with scikit-learn and TensorFlow

You're reading from   Mastering Predictive Analytics with scikit-learn and TensorFlow Implement machine learning techniques to build advanced predictive models using Python

Arrow left icon
Product type Paperback
Published in Sep 2018
Publisher Packt
ISBN-13 9781789617740
Length 154 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Alvaro Fuentes Alvaro Fuentes
Author Profile Icon Alvaro Fuentes
Alvaro Fuentes
Arrow right icon
View More author details
Toc

Summary

In this chapter, we introduced different ensemble methods such as bootstrap sampling, bagging, random forest, and boosting, and their working was explained with the help of some examples. We then used them for regression and classification. For regression, we took the example of a diamond dataset, and we also trained some KNN and other regression models. Later, their performance was compared. For classification, we took the example of a credit card dataset. Again, we trained all of the regression models. We compared their performance, and we found that the random forest model was the best performer.

In the next chapter, we will study k-fold cross-validation and parameter tuning. We will compare different ensemble learning models with k-fold cross-validation and later, we'll use k-fold cross-validation for hyperparameter tuning.

You have been reading a chapter from
Mastering Predictive Analytics with scikit-learn and TensorFlow
Published in: Sep 2018
Publisher: Packt
ISBN-13: 9781789617740
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime