Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering NLP from Foundations to LLMs

You're reading from   Mastering NLP from Foundations to LLMs Apply advanced rule-based techniques to LLMs and solve real-world business problems using Python

Arrow left icon
Product type Paperback
Published in Apr 2024
Publisher Packt
ISBN-13 9781804619186
Length 340 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Meysam Ghaffari Meysam Ghaffari
Author Profile Icon Meysam Ghaffari
Meysam Ghaffari
Lior Gazit Lior Gazit
Author Profile Icon Lior Gazit
Lior Gazit
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Chapter 1: Navigating the NLP Landscape: A Comprehensive Introduction FREE CHAPTER 2. Chapter 2: Mastering Linear Algebra, Probability, and Statistics for Machine Learning and NLP 3. Chapter 3: Unleashing Machine Learning Potentials in Natural Language Processing 4. Chapter 4: Streamlining Text Preprocessing Techniques for Optimal NLP Performance 5. Chapter 5: Empowering Text Classification: Leveraging Traditional Machine Learning Techniques 6. Chapter 6: Text Classification Reimagined: Delving Deep into Deep Learning Language Models 7. Chapter 7: Demystifying Large Language Models: Theory, Design, and Langchain Implementation 8. Chapter 8: Accessing the Power of Large Language Models: Advanced Setup and Integration with RAG 9. Chapter 9: Exploring the Frontiers: Advanced Applications and Innovations Driven by LLMs 10. Chapter 10: Riding the Wave: Analyzing Past, Present, and Future Trends Shaped by LLMs and AI 11. Chapter 11: Exclusive Industry Insights: Perspectives and Predictions from World Class Experts 12. Index 13. Other Books You May Enjoy

Summary

In this chapter, we learned about various concepts related to machine learning, starting with data exploration and preprocessing techniques. We then explored various machine learning models, such as logistic regression, decision trees, support vector machines, and random forests, along with their strengths and weaknesses. We also discussed the importance of splitting data into training and test sets, as well as techniques for handling imbalanced datasets.

The chapter also covered the concepts of model bias, variance, underfitting, and overfitting, and how to diagnose and address these issues. We also explored ensemble methods such as bagging, boosting, and stacking, which can improve model performance by combining the predictions of multiple models.

Finally, we learned about the limitations and challenges of machine learning, including the need for large amounts of high-quality data, the risk of bias and unfairness, and the difficulty of interpreting complex models. Despite...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime