Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering KVM Virtualization

You're reading from   Mastering KVM Virtualization Dive in to the cutting edge techniques of Linux KVM virtualization, and build the virtualization solutions your datacentre demands

Arrow left icon
Product type Paperback
Published in Aug 2016
Publisher Packt
ISBN-13 9781784399054
Length 468 pages
Edition 1st Edition
Tools
Arrow right icon
Toc

Table of Contents (17) Chapters Close

Preface 1. Understanding Linux Virtualization FREE CHAPTER 2. KVM Internals 3. Setting Up Standalone KVM Virtualization 4. Getting Started with libvirt and Creating Your First Virtual Machines 5. Network and Storage 6. Virtual Machine Lifecycle Management 7. Templates and Snapshots 8. Kimchi – An HTML5-Based Management Tool for KVM/libvirt 9. Software-Defined Networking for KVM Virtualization 10. Installing and Configuring the Virtual Datacenter Using oVirt 11. Starting Your First Virtual Machine in oVirt 12. Deploying OpenStack Private Cloud backed by KVM Virtualization 13. Performance Tuning and Best Practices in KVM 14. V2V and P2V Migration Tools A. Converting a Virtual Machine into a Hypervisor Index

Introducing VMM/hypervisor

As its name suggests, the VMM or hypervisor is a piece of software that is responsible for monitoring and controlling virtual machines or guest operating systems. The hypervisor/VMM is responsible for ensuring different virtualization management tasks, such as providing virtual hardware, VM life cycle management, migrating of VMs, allocating resources in real time, defining policies for virtual machine management, and so on. The VMM/hypervisor is also responsible for efficiently controlling physical platform resources, such as memory translation and I/O mapping. One of the main advantages of virtualization software is its capability to run multiple guests operating on the same physical system or hardware. The multiple guest systems can be on the same operating system or different ones. For example, there can be multiple Linux guest systems running as guests on the same physical system. The VMM is responsible to allocate the resources requested by these guest operating systems. The system hardware, such as the processor, memory, and so on has to be allocated to these guest operating systems according to their configuration, and VMM can take care of this task. Due to this, VMM is a critical component in a virtualization environment.

Depending on the location of the VMM/hypervisor and where it's placed, it is categorized either as type 1 or type 2.

Type 1 and Type 2 hypervisors

Hypervisors are mainly categorized as either Type 1 or Type 2 hypervisors, based on where they reside in the system or, in other terms, whether the underlying operating system is present in the system or not. But there is no clear or standard definition of Type 1 and Type 2 hypervisors. If the VMM/hypervisor runs directly on top of the hardware, its generally considered to be a Type 1 hypervisor. If there is an operating system present, and if the VMM/hypervisor operates as a separate layer, it will be considered as a Type 2 hypervisor. Once again, this concept is open to debate and there is no standard definition for this.

A Type 1 hypervisor directly interacts with the system hardware; it does not need any host operating system. You can directly install it on a bare metal system and make it ready to host virtual machines. Type 1 hypervisors are also called Bare Metal, Embedded, or Native Hypervisors.

oVirt-node is an example of a Type 1 Linux hypervisor. The following figure provides an illustration of the Type 1 hypervisor design concept:

Type 1 and Type 2 hypervisors

Here are the advantages of Type 1 hypervisors:

  • Easy to install and configure
  • Small in size, optimized to give most of the physical resources to the hosted guest (virtual machines)
  • Generates less overhead, as it comes with only the applications needed to run virtual machines
  • More secure, because problems in one guest system do not affect the other guest systems running on the hypervisor

However, a type 1 hypervisor doesn't favor customization. Generally, you will not be allowed to install any third party applications or drivers on it.

On the other hand, a Type 2 hypervisor resides on top of the operating system, allowing you to do numerous customizations. Type 2 hypervisors are also known as hosted hypervisors. Type 2 hypervisors are dependent on the host operating system for their operations. The main advantage of Type 2 hypervisors is the wide range of hardware support, because the underlying host OS is controlling hardware access. The following figure provides an illustration of the Type 2 hypervisor design concept:

Type 1 and Type 2 hypervisors

Deciding on the type of hypervisor to use mainly depends on the infrastructure of where you are going to deploy virtualization.

Also, there is a concept that Type 1 hypervisors perform better when compared to Type 2 hypervisors, as they are placed directly on top of the hardware. It does not make much sense to evaluate performance without a formal definition of Type 1 and Type 2 hypervisors.

You have been reading a chapter from
Mastering KVM Virtualization
Published in: Aug 2016
Publisher: Packt
ISBN-13: 9781784399054
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image