- Deep Q Network (DQN) is a neural network used for approximating the Q function.
- Experience replay is used to remove the correlations between the agent's experience.
- When we use the same network for predicting target value and predicted value there will lot of divergence so we use separate target network.
- Because of the max operator DQN overestimates Q value.
- By having two separate Q functions each learning independently double DQN avoids overestimating Q values.
- Experiences are priorities based on TD error in prioritized experience replay.
- Dueling DQN estimating the Q value precisely by breaking the Q function computation into value function and advantage function.




















































