Implement RAG’s traceable outputs, linking each response to its source document to build reliable multimodal conversational agents
Deliver accurate generative AI models in pipelines integrating RAG, real-time human feedback improvements, and knowledge graphs
Balance cost and performance between dynamic retrieval datasets and fine-tuning static data
Description
RAG-Driven Generative AI provides a roadmap for building effective LLM, computer vision, and generative AI systems that balance performance and costs.
This book offers a detailed exploration of RAG and how to design, manage, and control multimodal AI pipelines. By connecting outputs to traceable source documents, RAG improves output accuracy and contextual relevance, offering a dynamic approach to managing large volumes of information. This AI book shows you how to build a RAG framework, providing practical knowledge on vector stores, chunking, indexing, and ranking. You’ll discover techniques to optimize your project’s performance and better understand your data, including using adaptive RAG and human feedback to refine retrieval accuracy, balancing RAG with fine-tuning, implementing dynamic RAG to enhance real-time decision-making, and visualizing complex data with knowledge graphs.
You’ll be exposed to a hands-on blend of frameworks like LlamaIndex and Deep Lake, vector databases such as Pinecone and Chroma, and models from Hugging Face and OpenAI. By the end of this book, you will have acquired the skills to implement intelligent solutions, keeping you competitive in fields from production to customer service across any project.
Who is this book for?
This book is ideal for data scientists, AI engineers, machine learning engineers, and MLOps engineers. If you are a solutions architect, software developer, product manager, or project manager looking to enhance the decision-making process of building RAG applications, then you’ll find this book useful.
What you will learn
Scale RAG pipelines to handle large datasets efficiently
Employ techniques that minimize hallucinations and ensure accurate responses
Implement indexing techniques to improve AI accuracy with traceable and transparent outputs
Customize and scale RAG-driven generative AI systems across domains
Find out how to use Deep Lake and Pinecone for efficient and fast data retrieval
Control and build robust generative AI systems grounded in real-world data
Combine text and image data for richer, more informative AI responses
Rothman has once again delivered something exceptional with RAG-Driven Generative AI. As expected from Rothman, this book shines in its ability to make complex topics accessible and practical, making it a standout in the growing literature on RAG systems. If you're looking for one of the best resources on RAG, packed with Python code and real-world applications, this book will not let you down.For readers keen to get hands-on, the book does not disappoint. Rothman provides a wealth of Python code throughout, with step-by-step examples that make it easy to follow along and implement RAG-driven solutions. Each chapter concludes with questions to test your understanding, reinforcing key concepts and ensuring that you grasp the material before moving on. For beginners and experienced practitioners alike, this interactive approach adds immense value to the learning experience.Chapter 4, Building a RAG Pipeline, is particularly valuable, offering clear instructions on how to build an end-to-end RAG system. The chapter walks readers through the process of designing a robust RAG pipeline. In addition, Rothman explores cutting-edge tools such as LlamaIndex, Deep Lake, and OpenAI to illustrate how to leverage them effectively for RAG-based projects. The comprehensive nature of this chapter makes it an essential guide for anyone looking to develop RAG systems from scratch or optimise existing ones.However, the most enlightening part of the book for this reader was Chapter 5: Boosting RAG Performance with Expert Human Feedback. This chapter delves into the creation of an adaptive RAG system that can evolve based on user feedback. Rothman guides readers through building a hybrid adaptive RAG program in Python on Google Colab. This hands-on project not only gives readers a solid grasp of adaptive RAG processes but also demonstrates how to adjust a system when predefined models fail to meet user expectations. Rothman goes further to show how human feedback, gathered through user rankings, can be integrated to fine-tune RAG systems, ensuring that the AI continues to meet users' needs. The chapter concludes with the implementation of an automated ranking system to enhance the generative model's performance, making it highly applicable to real-world business settings.In conclusion, RAG-Driven Generative AI is a must-read for anyone involved with LLMs. Rothman has delivered an insightful, practical, and highly recommended resource for anyone looking to explore RAG systems. Highly recommended.
Amazon Verified review
Jorge DeflonOct 10, 2024
5
I have been reading this new book on generative artificial intelligence complemented with RAG (Retrieval-Augmented Generation) and I find it quite useful and interesting.LLM models are advanced artificial intelligence systems designed to process and generate human language.They are trained with enormous amounts of text from several sources, to understand and respond coherently to a wide variety of questions and requests, but this also carries the disadvantage that they may not have the most relevant information for an organization, since it was not available when the model was trained, either due to time or confidentiality issues.Retrieval enhanced generation (RAG) is the process of optimizing the output so that it references an personalized knowledge base before generating a response.This allows the GAI to produce more useful and reliable responses to the organization's users.This book is one of the most complete and up-to-date references on how to use RAG techniques to improve the responses that GAI tools provide to organizational users.The book contains many examples on how use the different types of RAG, including the necessary code to incorporate it into your projects quickly and efficiently.Highly recommended for all practitioners, developers, and students of the topic of generative artificial intelligence.
Amazon Verified review
Subhayan RoyOct 11, 2024
5
RAG being in the forefront of Gen AI LLM models is a highly sought after skill or knowledge to have.This book covers the theory part of RAG, vectorization, Vector databases.Yet what I found most fascinating was the code snippets, applications that you can directly use in your GenAI application with a bit of modification.Just one advice be clear on Transformer and language models before learning RAG.For this I would recommend Denis's other book Transformers for NLP.
Amazon Verified review
Siddhartha VemugantiOct 15, 2024
5
Denis Rothman's "RAG-Driven Gen AI" offers a comprehensive exploration of Retrieval-Augmented Generation systems, addressing a critical need in the rapidly evolving field of artificial intelligence. This book stands out for its practical approach, bridging the gap between theoretical concepts and real-world applications.Rothman's writing style is accessible yet thorough, guiding readers from foundational principles to advanced implementations of RAG systems. The book's structure feels well-considered, allowing readers to build their understanding progressively. While it assumes some prior knowledge of machine learning and Python, making it less suitable for complete beginners, it offers valuable insights for software engineers, developers, and data scientists looking to expand their AI toolkit.One of the book's strengths lies in its diverse range of practical examples. By covering applications from drone technology to customer retention, Rothman effectively demonstrates the versatility of RAG systems. The chapter on multimodal RAG for drone technology is particularly intriguing, opening up new possibilities that many readers might not have previously considered.A standout feature is the book's attention to often-overlooked aspects of AI development, such as software versioning and package management. Rothman's detailed guidance on version control and dependency management addresses real challenges faced by practitioners, potentially saving readers significant time and frustration.The hands-on approach, complete with projects and source code, transforms the book from a mere reference into a practical learning tool. Rothman doesn't shy away from discussing performance optimization and cost management – crucial considerations for implementing AI solutions in production environments.However, readers should be aware that the rapid pace of AI advancement may necessitate supplementing this book with current research and developments. Some cutting-edge concepts discussed may evolve quickly."RAG-Driven Gen AI" serves as a valuable resource for those looking to understand and implement RAG systems. While it may not be the only book you'll need on the subject, it provides a solid foundation and practical insights that many readers will find useful. Rothman's work effectively captures the current state of RAG technology while offering guidance that should remain relevant as the field continues to evolve.For professionals aiming to leverage the power of RAG systems or enhance their AI capabilities, this book is a worthwhile addition to their technical library. It offers a balanced mix of theoretical understanding and practical application, making it a useful companion for those navigating the complex landscape of modern AI development.
Amazon Verified review
Previous
1
2
3
Next
About the author
Denis Rothman
Denis Rothman
Expert in AI Transformers including ChatGPT/GPT-4, Bestselling Author
Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.
If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.
Please Note: Packt eBooks are non-returnable and non-refundable.
Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:
You may make copies of your eBook for your own use onto any machine
You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website?
If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:
Register on our website using your email address and the password.
Search for the title by name or ISBN using the search option.
Select the title you want to purchase.
Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title.
Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook?
If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
To view your account details or to download a new copy of the book go to www.packtpub.com/account
Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.
You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.
What are the benefits of eBooks?
You can get the information you need immediately
You can easily take them with you on a laptop
You can download them an unlimited number of times
You can print them out
They are copy-paste enabled
They are searchable
There is no password protection
They are lower price than print
They save resources and space
What is an eBook?
Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.
When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.
For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.