Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Elastic Stack 8.x Cookbook

You're reading from   Elastic Stack 8.x Cookbook Over 80 recipes to perform ingestion, search, visualization, and monitoring for actionable insights

Arrow left icon
Product type Paperback
Published in Jun 2024
Publisher Packt
ISBN-13 9781837634293
Length 688 pages
Edition 1st Edition
Arrow right icon
Authors (2):
Arrow left icon
Yazid Akadiri Yazid Akadiri
Author Profile Icon Yazid Akadiri
Yazid Akadiri
Huage Chen Huage Chen
Author Profile Icon Huage Chen
Huage Chen
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Chapter 1: Getting Started – Installing the Elastic Stack 2. Chapter 2: Ingesting General Content Data FREE CHAPTER 3. Chapter 3: Building Search Applications 4. Chapter 4: Timestamped Data Ingestion 5. Chapter 5: Transform Data 6. Chapter 6: Visualize and Explore Data 7. Chapter 7: Alerting and Anomaly Detection 8. Chapter 8: Advanced Data Analysis and Processing 9. Chapter 9: Vector Search and Generative AI Integration 10. Chapter 10: Elastic Observability Solution 11. Chapter 11: Managing Access Control 12. Chapter 12: Elastic Stack Operation 13. Chapter 13: Elastic Stack Monitoring 14. Index 15. Other Books You May Enjoy

Implementing semantic search with sparse vectors

In this recipe, we’ll introduce another vector search strategy – the sparse vector. In Elastic, it’s implemented through a proprietary model developed by search and machine learning experts at Elastic, called Elastic Learned Sparse EncodeR (ELSER). This model gives you the ability to perform semantic search right out of the box. We will learn how you can apply it to our dataset and what the benefits of leveraging such a strategy are versus dense vector search.

Getting ready

To follow along in this recipe, you’ll need to meet the following requirements:

  • Make sure that you have completed the Implementing semantic search with dense vector recipe, as we will rely on the same dataset and Search Application
  • As we will use the ELSER v2 sparse embedding model, which requires Elastic Stack version 8.11, make sure to have an Elastic deployment running in at least this version.
  • Also, be mindful...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image